User Tools

Site Tools


math54-f22:midterm1-sample

Sample Midterm 1

Our midterm will be 50 minutes, hold in discussion session on next Wednesday (Oct 5). The test range is Givental [LA] Ch 1 and Ch 2, and Ch 3 with the concept of basis, linear independence and span. We will have 5 problems, each worth 20 points.

Problem 1 (20 pts) True or False. If you think it is true, give some explanation; if you think it is false, give a counter-example.

  • Let the conic curve CC be given by the equation ax2+bxy+cy2=1a x^2 + b xy + cy^2=1, where a,b,ca,b,c are real numbers. If a,b,ca,b,c are all positive, then CC must be an ellipse.
  • Let T:R2R2T: \R^2 \to \R^2 be a linear transformation. If T((1,0))(0,0)T( (1,0)) \neq (0,0) and T((0,1))(0,0)T( (0,1) ) \neq (0,0), then TT must be invertible.
  • Let z1,,z5z_1, \cdots, z_5 be the roots of polynomial equation z5+5z+3=0z^5+5z+3=0, then z1++z5=0z_1+\cdots+z_5=0.
  • Let AA be a 3 by 3 matrix. If A2=0A^2=0, then AA is the zero matrix.

Problem 2 (20 pts) (111011001)2=? \begin{pmatrix} 1 & 1 & 1 \cr 0 & 1 & 1 \cr 0 & 0 & 1 \cr \end{pmatrix}^2=?

det(111021034)=? \det \begin{pmatrix} 1 & 1 & 1 \cr 0 & 2 & 1 \cr 0 & 3 & 4 \cr \end{pmatrix}=?

Problem 3 (20 pts) Represent the bilinear form B((x1,x2),(y1,y2))=2x1(y1+y2)B( (x_1,x_2), (y_1,y_2) ) = 2 x_1(y_1+y_2) in R2\R^2 as the sum S+AS+A of a symmetric and an anti-symmetric ones.

Problem 4 (20 pts) What is the length of the permutation (12342431)\begin{pmatrix} 1 & 2 & 3 & 4 \cr 2 & 4 & 3 & 1 \end{pmatrix}?

Problem 5 (20 pts) Let AA be a size nn matrix. Express det(adj(A))\det(adj(A)) using detA\det A.

math54-f22/midterm1-sample.txt · Last modified: 2022/10/01 01:32 by pzhou