User Tools

Site Tools


math214:04-06

2020-04-06, Monday

\gdef\xto\xrightarrow \gdef\End{\z{ End}}

Summary of Connection and Curvature

Let EE be a vector bundle over a smooth manifold. The connection \nabla is given as such Ω0(M,E)Ω1(M,E)Ω2(M,E). \Omega^0(M, E) \xto{ \nabla} \Omega^1(M, E) \xto{ \nabla} \Omega^2(M, E) \cdots. And the curvature is defined succinctly as F=2 F_\nabla = \nabla^2 which is a map Ωk(M,E)Ωk+2(M,E)\Omega^k(M,E) \to \Omega^{k+2}(M,E) that commute with C(M)C^\infty(M) action, hence FΩ2(M, End(E)).F_\nabla \in \Omega^2(M, \End(E)).

Locally, if we have a base coordinates xix_i, and local trivialization eαe_\alpha of EE, then we may write the connection as =d+[Γi]βαdxieαδβ \nabla = d + [\Gamma_i]^\alpha_\beta dx^i \otimes e_\alpha \otimes \delta^\beta where {δα}\{\delta^\alpha\} is the dual basis to {eα}\{e_\alpha\}, and eαδβe_\alpha \otimes \delta^\beta is a local section of  End(E)\End(E). F=2=(Fij)βαdxjdxieαδβ F_\nabla = \nabla^2 = (F_{ij})^\alpha_\beta dx^j \wedge d x^i \otimes e_\alpha \otimes \delta^\beta where [Fij]βα=i[Γj]βαj[Γi]βα+[Γi]γα[Γj]βγ[Γj]γα[Γi]βγ [F_{ij}]^\alpha_\beta = \d_i [\Gamma_j]^\alpha_\beta - \d_j [\Gamma_i]^\alpha_\beta + [\Gamma_i]^\alpha_\gamma [\Gamma_j]^\gamma_\beta - [\Gamma_j]^\alpha_\gamma [\Gamma_i]^\gamma_\beta If we view []βα[–]^\alpha_\beta as (α,β)(\alpha, \beta) entry of an n×nn \times n matrix, then the above can be written as an equation matrix valued forms Fij=iΓjjΓi+ΓiΓjΓjΓi. F_{ij} = \d_i \Gamma_j - \d_j \Gamma_i + \Gamma_i \Gamma_j - \Gamma_j \Gamma_i.

Holonomy Around the Loop

Recall that given a path γ:[0,1]M\gamma: [0,1] \to M, we can define parallel transport Pγ:Eγ(0)Eγ(1). P_\gamma: E_{\gamma(0)} \to E_{\gamma(1)}. In particular, if the path is a loop, ie., γ(0)=γ(1)\gamma(0)=\gamma(1), then we have an endormorphism Pγ End(Eγ(0)) P_\gamma \in \End(E_{\gamma(0)}). This is called the holonomy of the loop.

Geometric Picture

What is the geometric meaning of curvature?

Suppose we are given a local presentation of ,F\nabla, F_\nabla as above. For simplicity, assume M=R2M=\R^2, then we claim that F12=limϵ,δ01ϵδPγ F_{12} = - \lim_{\epsilon, \delta \to 0} \frac{1}{\epsilon \delta} P_\gamma where γ\gamma is the loop around the boundary of the small square [0,ϵ]×[0,δ][0, \epsilon] \times [0, \delta] counter-clockwise.

To see this, we break down the loop into four segments, and denote the parallel transports on the four segments as Pi,i=1,,4P_i, i=1, \cdots, 4, and we work out the expansion modulo ϵ2,δ2\epsilon^2, \delta^2 terms

From (0,0)(0,0) to (ϵ,0)(\epsilon,0), say we have path γ1(t)=(t,0)\gamma_1(t) = (t, 0) for t[0,ϵ]t \in [0, \epsilon]. We need to solve equation tuα(t)+[Γi]βαγ˙1i(t)uβ(t)=0 \d_t u^\alpha(t) + [\Gamma_i]^\alpha_\beta \dot \gamma_1^i(t) u^\beta(t) = 0 since γ˙1i(t)=1\dot \gamma_1^i(t) = 1 only if i=1i=1, thus tuα(t)=[Γ1]βα(0,t)uβ(t) \d_t u^\alpha(t) = - [\Gamma_1]^\alpha_\beta(0, t) u^\beta(t) Approximately, we have [u](ϵ)(1ϵΓ1(0,0))[u](0). [u](\epsilon) \approx (1 - \epsilon \Gamma_1(0,0)) [u](0). The parallel transport along the first segment is P11ϵΓ1(0,0),P_1 \approx 1 - \epsilon \Gamma_1(0,0), Similarly, we have P21δΓ2(ϵ,0),P3=1+ϵΓ1(0,δ)P41+δΓ2(0,0) P_2 \approx 1 - \delta \Gamma_2(\epsilon, 0), \quad P_3 = 1 + \epsilon \Gamma_1(0,\delta) \quad P_4 \approx 1 + \delta \Gamma_2 (0,0) Using Taylor expansion for Γ\Gamma at (0,0)(0,0), P4P3P2P1(1+δΓ2)(1+ϵΓ1ϵδ2Γ1)(1δΓ2δϵ1Γ2)(1ϵΓ1)(0,0) P_4 P_3 P_2 P_1 \approx (1 + \delta \Gamma_2 ) (1 + \epsilon \Gamma_1 - \epsilon\delta \d_2 \Gamma_1 ) (1 - \delta \Gamma_2 - \delta \epsilon \d_1 \Gamma_2) (1 - \epsilon \Gamma_1)|_{(0,0)} 1ϵδ(1Γ22Γ1+Γ1Γ2Γ2Γ1)(0,0). \approx 1 - \epsilon \delta (\d_1 \Gamma_2 - \d_2 \Gamma_1 + \Gamma_1 \Gamma_2 - \Gamma_2 \Gamma_1)|_{(0,0)}. Hence we are done. See also [Ni] 3.3 for a more rigorous derivation.

Bianchi Identity

 End(E)(F)=0 \nabla^{\End(E)}(F_\nabla) = 0

(1) Formal proof. If TΩp(M, End(E))T \in \Omega^p(M, \End(E)), then we have ΦT:Ωk(M,E)Ωk+p(M,E)\Phi_T: \Omega^k(M, E) \to \Omega^{k+p}(M, E) a C(M)C^\infty(M)-linear map. The exterior covariant derivative (T)Ωp+1(M, End(E))\nabla (T) \in \Omega^{p+1}(M, \End(E)) satisfies Φ(T)=[,ΦT]=ΦT(1)pΦT \Phi_{\nabla(T)} = [\nabla, \Phi_T] = \nabla \Phi_T - (-1)^p \Phi_T \nabla that is, for a section uΩk(M,E)u \in \Omega^k(M, E), we have [(T)](u)=(Tu)(1)pT(u). [\nabla(T)](u) = \nabla (T \wedge u) - (-1)^p T \wedge (\nabla u).

Now, take T=FΩ2(M, End(E))T = F_\nabla \in \Omega^2(M, \End(E)), we need to show that (F)=[,2]=0\nabla(F_\nabla) = [\nabla, \nabla^2] = 0. done.

This seems too easy, did I miss a sign? (no..)

(2) Try again, using local presentation F=(d+A)2=dA+AA=dA+(1/2)[A,A] F = (d + A)^2 = dA + A \wedge A = dA + (1/2) [A, A] where in the last expression  End(E)\End(E) is viewed as a Lie algebra.

Then (F)=[,F]=[d+A,dA+(1/2)[A,A]]=(1/2)d[A,A]+[A,dA]+(1/2)[A,[A,A]]=(1/2)[A,[A,A]] \nabla(F) = [\nabla, F] = [d+A, dA + (1/2) [A, A]] = (1/2) d[A, A] + [A, dA] + (1/2) [A, [A, A]] = (1/2) [A, [A, A]] The last quantity is zero, by Jacobi identity, to be more explicity, we write A=idxiΓi,ΓiMn(R)A = \sum_i dx^i \ot \Gamma_i, \quad \Gamma_i \in M_n(\R) Then [A,[A,A]]=i,j,kdxidxjdxk[Γi,[Γj,Γk]]=0[A, [A, A]] = \sum_{i,j,k} dx^i \wedge dx^j \wedge dx^k [\Gamma_i, [\Gamma_j, \Gamma_k]] = 0 for example, the term with dx1dx2dx3dx^1 \wedge dx^2 \wedge dx^3 has (2 times) [Γ1,[Γ2,Γ3]]+[Γ2,[Γ3,Γ1]]+[Γ3,[Γ1,Γ2]]=0. [\Gamma_1, [\Gamma_2, \Gamma_3]] + [\Gamma_2, [\Gamma_3, \Gamma_1]] + [\Gamma_3, [\Gamma_1, \Gamma_2]] = 0.

math214/04-06.txt · Last modified: 2020/04/06 10:35 by pzhou