User Tools

Site Tools


math214:04-03

2020-04-03, Friday

\gdef\End{\text{ End}}

Parallel Transport.

Let γ:[0,1]M\gamma: [0,1] \to M be an embedded smooth curve. (If you worry about the boundary, think of an embedded curve (ϵ,1+ϵ)M(-\epsilon, 1+\epsilon) \to M.) Let EME \to M be a vector bundle, \nabla be a connection. Our goal is to define the isomorphism Pγ:Eγ(0)Eγ(1).P_\gamma: E_{\gamma(0)} \to E_{\gamma(1)}. Suppose u0Eγ(0)u_0 \in E_{\gamma(0)}, we want to find a section utEγ(t)u_t \in E_{\gamma(t)}, such that γ˙(t)ut=0. \nabla_{\dot \gamma(t)} u_t = 0. Namely, we should have a 'constant' (or flat) section tutt \mapsto u_t, living over the image of γ\gamma.

The above statement is correct morally, however, γ˙(t)ut\nabla_{\dot \gamma(t)} u_t notation is problematic since utu_t is only a section living on a line, not on an open set of MM. There are two ways to make this rigorous.

  1. One is to go to a coordinate patch. Say image of γ\gamma is contained in a trivializing patch UU of EE, and we have {eα}\{e_\alpha\} a frame of EE, and x1,,xnx^1, \cdots, x^n are base coordinate, then we may express a section using the coefficients ut=αuα(t)eα(γ(t))Eγ(t).u_t = \sum_{\alpha} u^\alpha(t) e_\alpha(\gamma(t)) \in E_{\gamma(t)}. The collection of coefficients uα(t)u^\alpha(t) should satisfy a system of ODE duα(t)dt+Γiβα(γ(t))γ˙i(t)uβ(t)=0. \frac{d u^\alpha(t)}{dt} + \Gamma^\alpha_{i \beta}(\gamma(t)) \dot \gamma^i(t) u^{\beta}(t) = 0.
  2. The second way, is to define the pullback bundle γE\gamma^*E and the pull-back connection γ\gamma^*\nabla. In fact, this can be defined more generally. Let (M,E,)(M, E, \nabla) be a bundle with connection, and F:NMF : N \to M be a smooth map. We can define FEF^*E the pull-back bundle on NN, by setting (FE)p=EF(p)(F^*E)_p = E_{F(p)} for any pNp \in N, and we can define the connection on FEF^*E by setting (F)Xp(Fs)=(F(Xp)s)p(F^*\nabla)_{X_p} (F^* s) = (\nabla_{F_*(X_p)} s)|_p where ss is a section of EE defined near F(p)F(p), and XpX_p is a tangent vector in TpNT_p N. see this mathoverflow discussion for why this defines the pullback connection.

Curvature

Prop 3.3.8 [Ni] We may extend :Ω0(M,E)Ω1(M,E)\nabla: \Omega^0(M, E) \to \Omega^1(M, E) to :Ωk(M,E)Ωk+1(M,E)\nabla: \Omega^k(M, E) \to \Omega^{k+1}(M, E), such that it satisfies the Leibniz rule. If ωΩr(M)\omega \in \Omega^r(M) and uΩs(M,E)u \in \Omega^s(M, E), then d(ωu)=d(ω)u+(1)ωω(u). d^\nabla( \omega \wedge u) = d(\omega) \wedge u + (-1)^{|\omega|}\omega \wedge \nabla(u).

([Ni] uses dd^\nabla for this extension, where I still use \nabla.)

Prop For any smooth function fC(M)f \in C^\infty(M) and ωΩr(M,E)\omega \in \Omega^r(M, E), we have (2)(fω)=f2(ω) (\nabla^2) (f \omega ) = f \nabla^2(\omega)

Proof: This is a calculation worth doing, (dfω+f(ω))=dd(f)ωdf(ω)+df(ω)+f2(ω)=f2(ω). \nabla( df \omega + f \nabla(\omega)) = dd(f) \omega - df \nabla(\omega) + df \nabla(\omega) + f \nabla^2(\omega) = f \nabla^2(\omega).

Recall that, if a map a:Ωk(M,E)Ωk+s(M,E)a: \Omega^k(M, E) \to \Omega^{k+s}(M, E) is a C(M)C^\infty(M)-linear map, then the action of aa is point-wise (no derivative of section of EE is neede). In other word, we may view aΩs(M, End(E))a \in \Omega^s(M, \End(E)).

Curvature We define the curvature F=2Ω2(M, End(E))F_\nabla = \nabla^2 \in \Omega^2(M, \End(E))

Local connection 1-form and Curvature 2-form

Suppose we have a local trivialization {eα}\{e_\alpha\} over UMU \In M. Then, we have an induced trivial connection dUd_U on EUE|_U, and we may write U=dU+A\nabla|_U = d_U + A, for some AΩ1(U, End(E))A \in \Omega^1(U, \End(E)). We then have FU=(U)2=(dU+A)2=dUA+AA F_\nabla|_U = (\nabla|_U)^2 = (d_U + A)^2 = d_U A + A \wedge A where we define :Ωr(M, End(E))×Ωs(M, End(E))Ωr+s(M, End(E))\wedge: \Omega^r(M, \End(E)) \times \Omega^s(M, \End(E)) \to \Omega^{r+s}(M, \End(E)) by \wedge on the form factor, and compose on the associative algebra factor  End(E)\End(E) (ηa)(ξb)=(ηξ)(ab),η,ξΩ(M),a,bΩ0( End(E)). (\eta \ot a) \wedge (\xi \ot b) = (\eta \wedge \xi) \ot (ab), \quad \eta, \xi \in \Omega^*(M), a,b \in\Omega^0(\End(E)).

Useful Formula

In the following, ω\omega denote kk-form, uu denote section of EE. X,Y,ZX, Y, Z are vector fields. We have X(ωu)=LX(ω)u+ωX(u) \nabla_X(\omega \ot u) = L_X(\omega) \ot u + \omega \ot \nabla_X(u) iX+iX=X i_X \nabla + \nabla i_X = \nabla_X iXiY+iYiX=0 i_X i_Y + i_Y i_X = 0 XiYiYX=i[X,Y]\nabla_X i_Y - i_Y \nabla_X = i_{[X,Y]}

For example, we test the last formula on Ω1(M,E)\Omega^1(M, E), ηΩ1(M)\eta \in \Omega^1(M), uu a section of EE, (XiYiYX)(ηu)=X(η(Y)u)iY(LX(η)u+ηXu) (\nabla_X i_Y - i_Y \nabla_X) (\eta \ot u) = \nabla_X( \eta(Y) \ot u) - i_Y (L_X(\eta)\ot u + \eta \nabla_X u) =LX(η(Y))u+η(Y)X(u)[Y(η(X))+dη(X,Y)]uη(Y)X(u)= L_X( \eta(Y)) \ot u + \eta(Y) \ot \nabla_X(u) - [Y (\eta(X)) + d\eta(X, Y)] \ot u - \eta(Y) \ot \nabla_X(u) =ι[X,Y](η)u = \iota_{[X,Y]}(\eta) \ot u

Some formula about curvature F(X,Y)=[X,Y][X,Y] F(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} In local coordinates xix_i on UU, we have Fij=Fji=[i,j]F_{ij} = - F_{ji} = [\nabla_i, \nabla_j] where i=i\nabla_i = \nabla_{\d_i}.

math214/04-03.txt · Last modified: 2020/04/03 00:42 by pzhou