User Tools

Site Tools


math214:02-21

2020-02-21, Friday

\gdef\ot\otimes

Tensor power of a vector space

Let VV be a finite dimensional vector space.

We denote the kk-th tensor power of VV as Vk=VV k times V^{\otimes k} = \underbrace{V\ot \cdots \ot V}_{\text{ $k$ times} } Its elements are linear combinations of terms like v1vkv_1 \otimes \cdots \ot v_k, subject to the usual linearity relations.

It is sometimes useful to consider the tensor algebra (we only mention it here, but do not use it later in this course).

Definition (Tensor Algebra T(V)T(V) ) T(V)=RVV2V3T(V) = \R \oplus V \oplus V^{\ot 2} \oplus \cdots \oplus V^{\ot 3} \oplus \cdots Given two elements T=w1wkT = w_1 \ot \cdots \ot w_k and T=v1vlT' = v_1 \ot \cdots \ot v_l, their products is defined by juxtapostion. TT=w1wkv1vl T \ot T' = w_1 \ot \cdots \ot w_k \ot v_1 \ot \cdots \ot v_l

Exterior power of a vector space

Definition (Exterior product k(V)\wedge^k(V)) The kk-th exterior product k(V)\wedge^k(V) is the vector space consisting of linear combinations of the following terms v1vkv_1 \wedge \cdots \wedge v_k, where the expression is linear in each slot, c(v1vk)=(cv1)v2vk c \cdot (v_1 \wedge \cdots \wedge v_k) = (c v_1) \wedge v_2 \wedge \cdots \wedge v_k (v1+v1)vk=v1vk+v1vk (v_1+v_1') \wedge \cdots \wedge v_k = v_1 \wedge \cdots \wedge v_k + v_1'\wedge \cdots \wedge v_k and the expression changes signs if we swap any two slots v1vivjvk=v1vjvivk,1i<jk. v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j\wedge \cdots \wedge v_k = - v_1 \wedge \cdots \wedge v_j \wedge \cdots \wedge v_i\wedge \cdots \wedge v_k, \forall 1 \leq i < j \leq k.

If k=0k=0, we set 0V=R\wedge^0 V = \R. If k=1k=1, then 1V=V\wedge^1 V =V.

Proposition If we choose a basis e1,,ene_1, \cdots, e_n of VV, then for 0kn0 \leq k \leq n, the space k(V)\wedge^k(V) has a basis consisting of the following vectors ei1eik,1i1<i2<<ikn. e_{i_1} \wedge \cdots \wedge e_{i_k}, \quad 1 \leq i_1 < i_2 < \cdots < i_k \leq n.

Corrollary

  • dimk(V)=(nk)\dim \wedge^k(V) = {n \choose k}.
  • If k>nk > n, then kV=0\wedge^k V = 0.

Just as we defined tensor algebra T(V)T(V), we may define the exterior algebra V\wedge^* V. This turns out to be very useful.

Definition(Exterior algebra V\wedge^* V) V:=k=0nkV, where 0V:=R. \wedge^* V := \bigoplus_{k=0}^{n} \wedge^k V, \quad \text{ where } \wedge^0 V:= \R. The product between two elements is given by juxtaposition, more precisely, if A=v1vkkVA = v_1 \wedge \cdots \wedge v_k \in \wedge^k V, B=w1wllVB = w_1 \wedge \cdots \wedge w_l \in \wedge^l V, then AB:=v1vkw1wlk+1V. A \wedge B := v_1 \wedge \cdots \wedge v_k \wedge w_1 \wedge \cdots \wedge w_l \in \wedge^{k+1} V.

Relationship between quotient algebra and tensor algebra

  1. As quotient of tensor algebra
  2. As subalgebra of tensor algebra

Differential Forms

Ωk(M)=kTM.\Omega^k(M) = \wedge^k T^*M.

One can do integration of kk-forms on kk-submanifold.

exterior differentiation

In local coordinates (x1,,xn)(x_1, \cdots, x_n), given a differential kk-form, we have d(IfIdxI)=Id(fI)dxI=Ii=1nfIxidxidxI d (\sum_I f_I dx^I) = \sum_I d(f_I) \wedge dx^I = \sum_I \sum_{i=1}^n \frac{\d f_I}{\d x^i} dx^i \wedge dx^I

math214/02-21.txt · Last modified: 2020/02/21 08:13 by pzhou