User Tools

Site Tools


math121b:prob9-1

Chapter 12 Problem 9.1

Expand the following function into Legendre series. f(x)={11<x<010<x<1 f(x) = \begin{cases} -1 & -1 < x < 0 \cr 1 & 0 < x < 1 \end{cases}

Solution: We need to compute cn=2n+1211f(x)Pn(x)dx c_n = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n (x) dx Then we can find that f(x)n=0cnPn(x). f(x) \approx \sum_{n=0}^\infty c_n P_n(x).

To evaluate the integral, we will use the Rodrigue formula, which says Pn(x)=12nn!dndxn(x21)n. P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2-1)^n.

Let's use this and apply integration by part 11f(x)Pn(x)dx=10Pn(x)dx+01Pn(x)dx=12nn![dn1dxn1(x21)n10+dn1dxn1(x21)n01]=12nn!(2)dn1dxn1(x21)n(0) \begin{aligned} \int_{-1}^1 f(x) P_n (x) dx &= - \int_{-1}^0 P_n (x) dx + \int_0^1 P_n(x) dx \cr &= \frac{1}{2^n n!} [ -\frac{d^{n-1}}{dx^{n-1}} (x^2-1)^n|^0_{-1} + \frac{d^{n-1}}{dx^{n-1}} (x^2-1)^n|^1_0 ] \cr &= \frac{1}{2^n n!} (-2) \frac{d^{n-1}}{dx^{n-1}} (x^2-1)^n (0) \end{aligned} In one of the steps, we used dn1dxn1(x21)n\frac{d^{n-1}}{dx^{n-1}} (x^2-1)^n equals 0 when x=±1x=\pm 1.

Now, we need to figure out, what is dn1dxn1(x21)n(0)\frac{d^{n-1}}{dx^{n-1}} (x^2-1)^n (0). This is looking for xn1x^{n-1}'s coefficient in (x21)n(x^2-1)^n. Thus, we see this is only nonzero if n1=2mn-1=2m is an even number. That would be the binomial coefficient of (x21)n(x^2-1)^n's mm-th term (x21)n=(x2)n+(nn1)(x2)n1(1)1++(nm)(x2)m(1)nm+ (x^2-1)^n = (x^2)^n + {n \choose n-1} (x^2)^{n-1} (-1)^1 + \cdots + {n \choose m} (x^2)^{m} (-1)^{n-m} + \cdots Hence, we have (using n1=2mn-1=2m) (d/dx)2m(x21)n(0)=(2m)!(nm)(1)nm=(2m)!(2m+1m)(1)m+1 (d/dx)^{2m} (x^2-1)^n (0) = (2m)! {n \choose m} (-1)^{n-m} = (2m)! {2m+1 \choose m} (-1)^{m+1} Hence, we get, for n=2m+1n=2m+1) 11f(x)Pn(x)dx=12nn!(2)(2m)!(2m+1m)(1)m+1=(1)m22m(2m+1)(2m+1m) \int_{-1}^1 f(x) P_n (x) dx = \frac{1}{2^n n!} (-2) (2m)! {2m+1 \choose m} (-1)^{m+1} = \frac{(-1)^{m}}{2^{2m} (2m+1)} {2m+1 \choose m}

All in all, we have coefficient cn=2n+12{0n even (1)m22m(2m+1)(2m+1m)n=2m+1 c_n = \frac{2n+1}{2} \cdot \begin{cases} 0 & n \text{ even } \cr \frac{(-1)^{m}}{2^{2m} (2m+1)} {2m+1 \choose m} & n = 2m+1 \end{cases}

By the way, if you can find the first few terms, that would be enough.

math121b/prob9-1.txt · Last modified: 2020/03/14 13:51 by pzhou