User Tools

Site Tools


math121b:midterm2-solution

Midterm 2, Solution

1. Gamma functions and Beta function (15 points)

You may use Gamma or Beta function to express the final answer. Please show intermediate steps, otherwise there are no points.

1. Compute the integral (5 points) 01x41x3dx\int_0^1 \frac{x^4}{\sqrt{1-x^3}} dx

Replace variable u=x3u = x^3, then I=01u4/3(1u)1/2du1/3=(1/3)01(1u)1/2u2/3du=(1/3)01(1u)1/2u2/3du=(1/3)B(5/3,1/2). I = \int_0^1 \frac{u^{4/3}}{(1-u)^{1/2}} du^{1/3} = (1/3) \int_0^1 (1-u)^{-1/2} u^{2/3}du = (1/3) \int_0^1 (1-u)^{-1/2} u^{2/3}du = (1/3)B(5/3, 1/2).

2. Compute the integral (5 points) 01x2(lnx)2dx\int_0^1 x^2 (-\ln x)^2 dx Replace variable u=lnxu = -\ln x, then 0e2uu2eudu=(1/3)3Γ(3). \int_0^\infty e^{-2u} u^2 e^{-u} du = (1/3)^3 \Gamma(3).

3. Compute the special value of Gamma functions (the result should not be expressed using Gamma function).

  • Γ(1/2)=Γ(1/2)/(1/2)=2π\Gamma(-1/2) = \Gamma(1/2)/(1/2) = 2 \sqrt{\pi} (2 points)
  • Γ(1/2+i)=?|\Gamma(1/2 + i)| = ? (3 points) [Hint: Γ(zˉ)=Γ(z)\Gamma(\bar z) = \overline{\Gamma(z)}, and Γ(p)Γ(1p)=π/sin(pπ)\Gamma(p)\Gamma(1-p) = \pi / \sin(p \pi) ]

Take p=1/2+ip=1/2+i, then Γ(1/2+i)2=Γ(1/2+i)Γ(1/2i)=π/sin(π(1/2+i))=π/cos(iπ)=π/cosh(pi)|\Gamma(1/2 + i )|^2 = \Gamma(1/2+i) \Gamma(1/2-i) = \pi / \sin(\pi (1/2 + i)) = \pi / \cos(i \pi) = \pi / \cosh(pi)

2. Legendre Function (25 points)

1. Compute P3(x)P_3(x) using Rodrigue formula. (5 points)

By Rodrigue formula P3(x)=1233!x3(x21)3=1233!x3(x21)3=1233!x3(x63x4+3x21)=148(120x372x)=(5x33x)/2.P_3(x) = \frac{1}{2^3 3!} \d_x^3 (x^2-1)^3 = \frac{1}{2^3 3!} \d_x^3 (x^2-1)^3 = \frac{1}{2^3 3!} \d_x^3 (x^6- 3 x^4 + 3 x^2 - 1) = \frac{1}{48}(120 x^3 - 72 x) = (5 x^3 - 3 x)/2.

2. Prove the recursion relation 5.8( c) (10 points) Pl(x)xPl1(x)=lPl1(x) P_l'(x) - xP_{l-1}'(x) = l P_{l-1}(x) using the generating function Φ(x,h)=n=0hnPn(x)=112xh+h2\Phi(x,h) = \sum_{n=0}^\infty h^n P_n(x) = \frac{1}{\sqrt{1 - 2 x h + h^2} }

If we multiply both sides of the equation by hlh^l and sum over ll, we get LHS=xΦ(x,h)xhxΦ(x,h)LHS = \d_x \Phi(x,h) - x h \d_x \Phi(x,h) RHS=hh(hΦ(x,h)) RHS = h \d_h (h \Phi(x,h)) We plug in Φ(x,h)\Phi(x,h) to test whether this is true. LHS=(1xh)h(12xh+h2)3/2 LHS = (1-xh) \frac{h}{(1 - 2 x h + h^2)^{3/2}} and RHS=hΦ+h2(1/2)(2x+2h)(12xh+h2)3/2=[h(12xh+h2)+h2(xh)](12xh+h2)3/2 RHS = h \Phi + h^2 (-1/2) (-2x+2h) (1 - 2 x h + h^2)^{-3/2} = [h(1-2xh + h^2)+h^2(x-h)](1 - 2 x h + h^2)^{-3/2} =h(1hx)(12xh+h2)3/2 = h(1-hx)(1 - 2 x h + h^2)^{-3/2} OK, the same, done.

3. Compute 11xnPn(x)dx\int_{-1}^1 x^n P_n(x) dx in the following steps: ( 10 points)

  • Find the constant cc, such that Pn(x)=cxn+ lower order termsP_n(x) = c x^n + \z{ lower order terms}. (try Rodrigue formula to get the leading term)
  • Show that 11Pn(x)2dx=11cxnPn(x)dx\int_{-1}^1 P_n(x)^2 dx = \int_{-1}^1 c x^n P_n(x) dx
  • Look up 11Pn(x)Pn(x)dx\int_{-1}^1 P_n(x) P_n(x) dx.

The leading term of Pn(x)P_n(x) can be obtained as 12nn!(2n)(2n1)(n+1)=2n(2nn) \frac{1}{2^n n!} (2n)(2n-1)\cdots (n+1) = 2^{-n} {2n \choose n}

Because lower order term is orthogonal to Pn(x)P_n(x).

11Pn(x)Pn(x)dx=22n+1\int_{-1}^1 P_n(x) P_n(x) dx = \frac{2}{2n+1}

So finally, we get 2n+1(n!)2(2n+1)(2n)! \frac{2^{n+1}(n!)^2}{(2n+1) (2n)!}

3. Bessel Function (30 points)

1. Problem 12.1. Show by ratio test that the series for Jp(x)J_p(x) converges for all xx. (10 points)

2. Problem 15.6 (7 points)

3. Problem 19.1 (7 points)

4. Problem 20.3, 6, 7 (6 points)

4. Solving PDE with separation of variables (30 points)

1. Solve the steady state heat equation on 2D square [0,1]2[0,1]^2. (10 point) Δu(x,y)=0,0x,y1 \Delta u(x,y) = 0, \quad 0 \leq x, y \leq 1 with boundary condition that u(0,y)=0,u(1,y)=1,u(x,0)=0,u(x,1)=1. u(0, y)= 0, u(1,y)=1, u(x, 0)=0, u(x,1)=1.

Solution u(x,y)=n odd4nπsinh(nπ)(sin(nπx)sinh(nπy)+sin(nπy)sinh(nπx)) u(x,y) = \sum_{n \z{ odd} } \frac{4}{n \pi \sinh(n \pi)} \left( \sin(n \pi x) \sinh(n \pi y) + \sin(n \pi y) \sinh(n \pi x) \right)

2. Solve the steady state heat equation on 3D unit ball. (10 point) Δu(r,θ,ϕ)=0 \Delta u(r, \theta, \phi) = 0 with boundary condition at r=1r=1 that u(1,θ,ϕ)=cos(θ)sin(θ)sin(ϕ) u(1, \theta, \phi) = \cos(\theta) \sin(\theta) \sin(\phi)

Hint: use P21(cosθ)=3cos(θ)sin(θ)P_2^1(\cos \theta) = -3 \cos(\theta) \sin(\theta)

Solution: u=(1/3)r2P21(cos(θ))sin(ϕ) u = (-1/3) r^2 P_2^1(\cos(\theta)) \sin(\phi)

3. Solve the heat flow equation on a circle. (10 point) tu(t,θ)=θ2u(t,θ). \d_t u(t, \theta) = \d_\theta^2 u(t, \theta). such that the initial condition is u(0,θ)=cos2(θ). u(0, \theta) = \cos^2(\theta).

u(θ,t)=e4t(1/2)cos(2θ)+1/2u(\theta, t) = e^{-4t} (1/2) \cos(2\theta) + 1/2

math121b/midterm2-solution.txt · Last modified: 2020/04/30 14:31 by pzhou