2020-04-06, Monday
Today, we consider those PDEs with Laplacian in spherical coordinate.
Eigenfunction of Laplacian in spherical coordinate.
Δu=r21(∂r∂r2∂r∂u)+r21sinθ1∂θ∂(sinθ∂θ∂u)+r2sin2θ1∂ϕ2∂2u.
Notice that θ and ϕ varies in a bounded domain, hence the eigenvalue problems for these variables have discrete eigenvalues.
We look for eigenfunctions of the form
$$ u (r, \theta, \phi) = R® \Theta(\theta) \Phi(\phi). $$
Then Δu=λu is equivalent to
λ=u1Δu=R1r21(∂r∂r2∂r∂R)+Θ1r21sinθ1∂θ∂(sinθ∂θ∂Θ)+Φ1r2sin2θ1∂ϕ2∂2Φ.
which in turns breaks into equations
∂ϕ2∂2Φ=λϕΦ
sinθ1∂θ∂(sinθ∂θ∂Θ)+sin2θλϕΘ=λθΘ
R1r21(∂r∂r2∂r∂R)+r2λθ=λr⇒(∂r∂r2∂r∂R)+(λθ−λrr2)R=0
The total eigenvalue λ=λr.
The equation about Φ has sin(mϕ),cos(mϕ) as eigenfunctions, with eigenvalues λϕ=−m2.
The equation about Θ has associated Legendre polynomial as solution, recall that y(θ)=Plm(cosθ) solves equation (Problem 12.10.2)
sinθ1∂θ∂(sinθ∂θ∂y)+(l(l+1)−sin2θm2)y=0
By comparison, we get eigenvalues λθ=−l(l+1).
The equation about R is related to the spherical Bessel function's equation. Recall $y® = j_n®, y_n®$ solves
(∂r∂r2∂r∂y)+(r2−n(n+1))y=0
Hence, for λθ=l(l+1), we can solve $R®$ to get
$$ R® = \begin{cases}
j_l( k r), y_l(kr) & \lambda_r = -k^2 \cr
j_l( i k r), y_l(i kr) & \lambda_r = k^2 \cr
r^l, r^{-l-1} & \lambda_r=0
\end{cases}
$$
Usually, we require R(0) to be finite, and $y_l® \sim r^{-l-1}$ as r→0, hence we only keep the jl(kr),jl(ikr),rl solution above. The case λr can be obtained as the leading order behavior of jl(kr) after rescaling by a constant
rl=k→0limk−ljl(kr).
In some cases, suppose we solve the equation in the exterior of a ball and require the solution to decay as r→∞, then we will not ask R(0) to be finite, instead we require R(∞)=0. Then the yl(kr),yl(ikr),r−l−1 solutions will come into play.
Summary
The general eigenfunction is
u(r,\theta,\phi) = \begin{cases} j_l(kr) \cr y_l(kr) \end{cases}
P_l^
\cos \theta) \begin{cases} \cos(m \phi) \cr \sin(m \phi) \end{cases}, \quad \lambda = -k^2
Steady State temperature distribution inside a unit ball
We solve Δu=0 for r≤1 with u(r=1,θ,ϕ)=f(θ,ϕ). We may first decompose f(θ,ϕ) as
f(\theta, \phi) = \sum_{l=0}^\infty \sum_{m=0}^l [a_{l m} \cos(m\phi) + b_{l m} \sin(m \phi) ] P_l^
\cos \theta) $$
with $b_{l 0}=0$.
Then the solulution for $u$ is obtained by setting $\lambda = \lambda_r=0$
$$ u(r, \theta, \phi) = \sum_{l=0}^\infty \sum_{m=0}^l r^l [a_{l m} \cos(m\phi) + b_{l m} \sin(m \phi) ] P_l^
\cos \theta).
To obtain the coefficients alm,blm from f(θ,ϕ), we uses orthogonality of these functions $P_l^
\cos \theta) \cos(m \phi), P_l^
\cos \theta) \sin(m \phi)onthetwospherewithvolumeform\sin \theta d\theta d\phi.Forexample,weclaimthat,if(l, m) \neq (l', m')$, then
\int_{\phi = 0}^{2\pi} \int_{\theta=0}^\pi P_l^
\cos \theta) \cos(m \phi) P_{l'}^{m'}(\cos \theta) \cos(m' \phi) \sin \theta d\theta d\phi = 0
Indeed, integrating dϕ, we see that if m=m′ the result is zero; if m=m′ but l=l′, then we use the orthogonality of associated Legendre functions (see section 12.10 of Boas), to show that the integral is zero.