User Tools

Site Tools


math121b:04-06

2020-04-06, Monday

Today, we consider those PDEs with Laplacian in spherical coordinate.

Eigenfunction of Laplacian in spherical coordinate.

Δu=1r2(rr2ur)+1r21sinθθ(sinθuθ)+1r2sin2θ2uϕ2. \Delta u = \frac{1}{r^2} \left( \frac{\d}{\d r} r^2 \frac{\d u}{\d r} \right) + \frac{1}{r^2} \frac{1}{\sin \theta} \frac{\d }{\d \theta} ( \sin \theta \frac{\d u}{\d \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\d^2 u}{\d \phi^2}.

Notice that θ\theta and ϕ\phi varies in a bounded domain, hence the eigenvalue problems for these variables have discrete eigenvalues.

We look for eigenfunctions of the form $$ u (r, \theta, \phi) = R® \Theta(\theta) \Phi(\phi). $$ Then Δu=λu \Delta u = \lambda u is equivalent to λ=1uΔu=1R1r2(rr2Rr)+1Θ1r21sinθθ(sinθΘθ)+1Φ1r2sin2θ2Φϕ2. \lambda = \frac{1}{u} \Delta u = \frac{1}{R} \frac{1}{r^2} \left( \frac{\d}{\d r} r^2 \frac{\d R}{\d r} \right) + \frac{1}{\Theta} \frac{1}{r^2} \frac{1}{\sin \theta} \frac{\d }{\d \theta} ( \sin \theta \frac{\d \Theta }{\d \theta}) + \frac{1}{\Phi } \frac{1}{r^2 \sin^2 \theta} \frac{\d^2 \Phi}{\d \phi^2}. which in turns breaks into equations 2Φϕ2=λϕΦ \frac{\d^2 \Phi}{\d \phi^2} = \lambda_\phi \Phi 1sinθθ(sinθΘθ)+λϕsin2θΘ=λθΘ \frac{1}{\sin \theta} \frac{\d }{\d \theta} ( \sin \theta \frac{\d \Theta}{\d \theta}) + \frac{\lambda_\phi}{\sin^2 \theta} \Theta = \lambda_\theta \Theta 1R1r2(rr2Rr)+λθr2=λr(rr2Rr)+(λθλrr2)R=0 \frac{1}{R} \frac{1}{r^2} \left( \frac{\d}{\d r} r^2 \frac{\d R}{\d r} \right) + \frac{\lambda_\theta}{r^2} = \lambda_r \quad \Rightarrow \left( \frac{\d}{\d r} r^2 \frac{\d R}{\d r} \right) + (\lambda_\theta - \lambda_r r^2) R = 0 The total eigenvalue λ=λr\lambda = \lambda_r.

The equation about Φ\Phi has sin(mϕ),cos(mϕ)\sin(m\phi), \cos(m\phi) as eigenfunctions, with eigenvalues λϕ=m2\lambda_\phi = -m^2.

The equation about Θ\Theta has associated Legendre polynomial as solution, recall that y(θ)=Plm(cosθ)y(\theta) = P_l^m (\cos \theta) solves equation (Problem 12.10.2) 1sinθθ(sinθyθ)+(l(l+1)m2sin2θ)y=0 \frac{1}{\sin \theta} \frac{\d }{\d \theta} ( \sin \theta \frac{\d y}{\d \theta}) + \left( l(l+1) - \frac{m^2}{\sin^2 \theta} \right) y = 0 By comparison, we get eigenvalues λθ=l(l+1)\lambda_\theta = -l (l+1).

The equation about RR is related to the spherical Bessel function's equation. Recall $y® = j_n®, y_n®$ solves (rr2yr)+(r2n(n+1))y=0 \left( \frac{\d}{\d r} r^2 \frac{\d y}{\d r} \right) + (r^2 - n(n+1) ) y = 0 Hence, for λθ=l(l+1)\lambda_\theta = l(l+1), we can solve $R®$ to get $$ R® = \begin{cases} j_l( k r), y_l(kr) & \lambda_r = -k^2 \cr j_l( i k r), y_l(i kr) & \lambda_r = k^2 \cr r^l, r^{-l-1} & \lambda_r=0 \end{cases} $$ Usually, we require R(0)R(0) to be finite, and $y_l® \sim r^{-l-1}$ as r0r \to 0, hence we only keep the jl(kr),jl(ikr),rlj_l(kr), j_l(ikr), r^l solution above. The case λr\lambda_r can be obtained as the leading order behavior of jl(kr)j_l(kr) after rescaling by a constant rl=limk0kljl(kr). r^l = \lim_{k \to 0} k^{-l} j_l( k r).

In some cases, suppose we solve the equation in the exterior of a ball and require the solution to decay as rr \to \infty, then we will not ask R(0)R(0) to be finite, instead we require R()=0R(\infty) = 0. Then the yl(kr),yl(ikr),rl1y_l(kr), y_l(ikr), r^{-l-1} solutions will come into play.

Summary

The general eigenfunction is u(r,\theta,\phi) = \begin{cases} j_l(kr) \cr y_l(kr) \end{cases} P_l^m(\cos \theta) \begin{cases} \cos(m \phi) \cr \sin(m \phi) \end{cases}, \quad \lambda = -k^2

Steady State temperature distribution inside a unit ball

We solve Δu=0 \Delta u = 0 for r1r \leq 1 with u(r=1,θ,ϕ)=f(θ,ϕ)u(r=1, \theta, \phi) = f(\theta,\phi). We may first decompose f(θ,ϕ)f(\theta, \phi) as f(\theta, \phi) = \sum_{l=0}^\infty \sum_{m=0}^l [a_{l m} \cos(m\phi) + b_{l m} \sin(m \phi) ] P_l^m(\cos \theta) $$ with $b_{l 0}=0$. Then the solulution for $u$ is obtained by setting $\lambda = \lambda_r=0$ $$ u(r, \theta, \phi) = \sum_{l=0}^\infty \sum_{m=0}^l r^l [a_{l m} \cos(m\phi) + b_{l m} \sin(m \phi) ] P_l^m(\cos \theta).

To obtain the coefficients alm,blma_{lm}, b_{lm} from f(θ,ϕ)f(\theta, \phi), we uses orthogonality of these functions $P_l^m(\cos \theta) \cos(m \phi), P_l^m(\cos \theta) \sin(m \phi)onthetwospherewithvolumeform on the two sphere with volume form \sin \theta d\theta d\phi.Forexample,weclaimthat,if. For example, we claim that, if (l, m) \neq (l', m')$, then \int_{\phi = 0}^{2\pi} \int_{\theta=0}^\pi P_l^m(\cos \theta) \cos(m \phi) P_{l'}^{m'}(\cos \theta) \cos(m' \phi) \sin \theta d\theta d\phi = 0 Indeed, integrating dϕd\phi, we see that if mmm \neq m' the result is zero; if m=mm=m' but lll \neq l', then we use the orthogonality of associated Legendre functions (see section 12.10 of Boas), to show that the integral is zero.

math121b/04-06.txt · Last modified: 2020/04/06 10:24 by pzhou