User Tools

Site Tools


math121b:04-03

2020-04-03, Friday

Today we consider PDE problem in cylindrical coordinate and spherical coordinate.

Cylindrical Coordinate

Recall that Laplacian in cylindrical coordinate r,θ,zr, \theta, z is written as Δu=1rr(rr(u))+1r2θ2u+z2u. \Delta u = \frac{1}{r} \d_r(r \d_r(u)) + \frac{1}{r^2} \d_\theta^2 u + \d_z^2 u. We shall look for eigenfunctions of Δ\Delta of the following form u(r,θ,z)=R(r)Θ(θ)Z(z), u(r,\theta, z) = R( r ) \Theta(\theta) Z(z), Then we have 1uΔu=1R1rr(rr(R))+1Θ1r2θ2Θ+1Zz2Z. \frac{1}{u}\Delta u = \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R)) + \frac{1}{\Theta} \frac{1}{r^2} \d_\theta^2 \Theta + \frac{1}{Z} \d_z^2 Z. such that Θ1θ2Θ=λθ \Theta^{-1} \d_\theta^2 \Theta = \lambda_\theta 1R1rr(rr(R))+r2λθ=λr \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R)) + r^{-2} \lambda_\theta = \lambda_r 1Zz2Z=λz. \frac{1}{Z} \d_z^2 Z = \lambda_z.

eigenvalue problem for Θ\Theta.
λθ=n2,Θ(θ)=cos(nθ),sin(nθ)\lambda_\theta = -n^2, \quad \Theta(\theta) = \cos(n \theta), \sin(n \theta)

eigenvalue problem for R(r)R( r).
Assume λθ=n2\lambda_\theta = -n^2, then we get rr(rr(R))+(λrr2n2)R=0. r \d_r(r \d_r(R)) + (-\lambda_r r^2 - n^2) R = 0.

Compare with Bessel equation (12.2) from Boas x(xy)+(x2p2)y=0y(x)=aJp(x)+bYp(x). x(xy')' + (x^2 - p^2) y = 0 \Rightarrow y(x) = a J_p(x) + b Y_p(x). And notice that we want R(0)R(0) finite, and Yp(0)=|Y_p(0)| = \infty, we see R(r)={Jn(λrr)λr0rnλr=0 R( r) = \begin{cases} J_n(\sqrt{-\lambda_r} r) & \lambda_r \neq 0 \cr r^n & \lambda_r = 0 \cr \end{cases} Note that, the λr\sqrt{-\lambda_r} has an ambiguity of ±1\pm 1 sign, but Jn(x)=(1)nJn(x)J_n(x)=(-1)^n J_n(-x), hence you can take either sign for the square root.

If λr<0\lambda_r < 0, say λr=k2\lambda_r = -k^2 for k>0k>0, then R(r)=Jn(λrr)=Jn(kr) R( r) = J_n(\sqrt{-\lambda_r} r) = J_n(kr) R(r)willoscillateasR( r) will oscillate as r$ increase.

If λr>0\lambda_r > 0, say λr=k2\lambda_r = k^2 for k>0k>0, then we will take R(r)=In(kr)=inJn(ikr) R( r) = I_n(kr) = i^n J_n(i k r) where In(kr)I_n(kr) is the 'hyperbolic' Bessel function. R(r)R( r) looks like expoential function, with no oscillation.

Eigenvalue problem for Z(z)Z( z)
Z(z)={eλZzλz01,zλz=0 Z(z) = \begin{cases} e^{\sqrt{\lambda_Z} z} & \lambda_z \neq 0 \cr 1, z & \lambda_z = 0 \end{cases}

Hence, for any λθ=n2,λrR,λzR\lambda_\theta = -n^2, \lambda_r \in \R, \lambda_z \in \R, we have an eigen-function of Laplacian u=Rλr(r)Θn(θ)Zλz(z),Δu=(λr+λz)u. u = R_{\lambda_r}( r) \Theta_n(\theta) Z_{\lambda_z}(z), \quad \Delta u = (\lambda_r + \lambda_z) u. where the R,Θ,ZR, \Theta, Z are given as above.

Solve the Steady State Temperature problem

Suppose we are given a cylinder of radius 11 and height 11 (z[0,1]z \in [0,1]), and suppose we specify the temperature on the boundary of the cylinder. We need to solve the equation Δu=0 \Delta u = 0 satisfying the boundary condition.

Note that λz+λr=0\lambda_z + \lambda_r = 0, hence we will use λr\lambda_r and nn to label the solutions.

We consider two special cases of boundary value specification.

Case 1: Bottom and Side boundary value = 0. u(r,θ,z=1)u(r,\theta,z=1) is given Since R(r)R( r) will have a zero at r=1r=1, we should have λr=k2<0\lambda_r = -k^2 < 0, and uk,n(r,θ,z)=Jn(kr)cos(nθ)sinh(kz),Jn(kr)sin(nθ)sinh(kz) u_{k,n}(r, \theta, z) = J_n(kr) \cos(n\theta) \sinh(k z), \quad J_n(kr) \sin(n\theta) \sinh(k z) For each nn, we need to choose those kk such that Jn(k1)=0J_n(k 1) = 0, hence the choice of kk is discrete as well.

More precisely, let kn,m>0k_{n,m} > 0 be the mm-th root of Jn(x)J_n(x). Then the general solution is u(r,θ,z)=n=1m=1Jn(kn,mr)sinh(kn,mz)(an,mcos(nθ)+bn,msin(nθ)) u(r,\theta,z) = \sum_{n=1}^\infty \sum_{m=1}^\infty J_n(k_{n,m} r) \sinh(k_{n,m} z) (a_{n,m} \cos(n\theta) + b_{n,m} \sin(n\theta)) Set z=1z=1, we can use boundary condition to determine the coefficients an,m,bn,ma_{n,m}, b_{n,m}. Recall that 01Jn(kn,m1r)Jn(kn,m2r)rdr=0,m1m2 \int_0^1 J_n(k_{n,m_1} r) J_n(k_{n,m_2} r) rdr = 0, \quad m_1 \neq m_2 Hence an,m=0102πu(r,θ,1)Jn(kn,mr)cos(nθ)rdrdθsinh(kn,m)0102πJn(kn,mr)2cos2(nθ)rdrdθ a_{n,m} = \frac{\int_0^1 \int_{0}^{2\pi} u(r,\theta,1) J_n(k_{n,m} r) \cos(n\theta) r dr d\theta } {\sinh(k_{n,m}) \int_0^1 \int_{0}^{2\pi} J_n(k_{n,m} r)^2 \cos^2(n\theta) r dr d\theta } and bn,mb_{n,m} is obtained similarly, replacing cos(nθ)\cos(n\theta) by sin(nθ)\sin(n \theta).

Case 2: Bottom and Top face boundary value = 0. u(r=1,θ,z)u(r=1,\theta,z) is given This forces λz<0\lambda_z < 0. In particular, Z(z)=sin(mπz)Z(z) = \sin(m \pi z), hence λz=(mπ)2\lambda_z = -(m\pi)^2 and λr=(mπ)2\lambda_r = (m \pi)^2. The general solution is written as u(r,θ,z)=n=1m=1In(mπr)sin(mπz)(an,mcos(nθ)+bn,msin(nθ)) u(r,\theta, z) = \sum_{n=1}^\infty \sum_{m=1}^\infty I_n( m \pi r) \sin(m \pi z) (a_{n,m} \cos(n\theta) + b_{n,m} \sin(n\theta)) .

We figure out the coefficient an,m,bn,ma_{n,m}, b_{n,m} using the boundary value at r=1r=1. u(1,θ,z)=n=1m=1In(mπ)sin(mπz)(an,mcos(nθ)+bn,msin(nθ)) u(1, \theta, z) = \sum_{n=1}^\infty \sum_{m=1}^\infty I_n( m \pi) \sin(m \pi z) (a_{n,m} \cos(n\theta) + b_{n,m} \sin(n\theta)) . Hence by integrating θ,z\theta, z we get an,m=0102πu(1,θ,z)sin(mπz)cos(nθ)dθdzIn(mπ)0102πsin2(mπz)cos2(nθ)dθdz a_{n,m} = \frac{ \int_0^1 \int_0^{2\pi} u(1,\theta,z) \sin(m \pi z) \cos(n\theta) d \theta d z}{I_n( m \pi) \int_0^1 \int_0^{2\pi} \sin^2(m \pi z) \cos^2(n\theta) d \theta d z} and similarly for bn,mb_{n,m}.

General case Decompose the boundary condition into three parts, top face, bottom face and side face. Break the original problem into 3 smaller problems in which only one part is non-zero. Then add up the solution from the three smaller problems. You end up with a solution that satisfies Δu=0\Delta u =0 and has the desired boundary value.

math121b/04-03.txt · Last modified: 2020/04/03 10:39 by pzhou