User Tools

Site Tools


math121b:01-29

2020-01-29, Wednesday

\gdef\ot\otimes

Tensor power of a vector space

Let VV be a finite dimensional vector space.

We denote the kk-th tensor power of VV as Vk=VV k times V^{\otimes k} = \underbrace{V\ot \cdots \ot V}_{\text{ $k$ times} } Its elements are linear combinations of terms like v1vkv_1 \otimes \cdots \ot v_k, subject to the usual linearity relations.

It is sometimes useful to consider the tensor algebra (we only mention it here, but do not use it later in this course).

Definition (Tensor Algebra T(V)T(V) ) T(V)=RVV2V3T(V) = \R \oplus V \oplus V^{\ot 2} \oplus \cdots \oplus V^{\ot 3} \oplus \cdots Given two elements T=w1wkT = w_1 \ot \cdots \ot w_k and T=v1vlT' = v_1 \ot \cdots \ot v_l, their products is defined by juxtapostion. TT=w1wkv1vl T \ot T' = w_1 \ot \cdots \ot w_k \ot v_1 \ot \cdots \ot v_l

Exterior power of a vector space

Definition (Exterior product k(V)\wedge^k(V)) The kk-th exterior product k(V)\wedge^k(V) is the vector space consisting of linear combinations of the following terms v1vkv_1 \wedge \cdots \wedge v_k, where the expression is linear in each slot, c(v1vk)=(cv1)v2vk c \cdot (v_1 \wedge \cdots \wedge v_k) = (c v_1) \wedge v_2 \wedge \cdots \wedge v_k (v1+v1)vk=v1vk+v1vk (v_1+v_1') \wedge \cdots \wedge v_k = v_1 \wedge \cdots \wedge v_k + v_1'\wedge \cdots \wedge v_k and the expression changes signs if we swap any two slots v1vivjvk=v1vjvivk,1i<jk. v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j\wedge \cdots \wedge v_k = - v_1 \wedge \cdots \wedge v_j \wedge \cdots \wedge v_i\wedge \cdots \wedge v_k, \forall 1 \leq i < j \leq k.

If k=0k=0, we set 0V=R\wedge^0 V = \R. If k=1k=1, then 1V=V\wedge^1 V =V.

Proposition If we choose a basis e1,,ene_1, \cdots, e_n of VV, then for 0kn0 \leq k \leq n, the space k(V)\wedge^k(V) has a basis consisting of the following vectors ei1eik,1i1<i2<<ikn. e_{i_1} \wedge \cdots \wedge e_{i_k}, \quad 1 \leq i_1 < i_2 < \cdots < i_k \leq n.

Corrollary

  • dimk(V)=(nk)\dim \wedge^k(V) = {n \choose k}.
  • If k>nk > n, then kV=0\wedge^k V = 0.

Just as we defined tensor algebra T(V)T(V), we may define the exterior algebra V\wedge^* V. This turns out to be very useful.

Definition(Exterior algebra V\wedge^* V) V:=k=0nkV, where 0V:=R. \wedge^* V := \bigoplus_{k=0}^{n} \wedge^k V, \quad \text{ where } \wedge^0 V:= \R. The product between two elements is given by juxtaposition, more precisely, if A=v1vkkVA = v_1 \wedge \cdots \wedge v_k \in \wedge^k V, B=w1wllVB = w_1 \wedge \cdots \wedge w_l \in \wedge^l V, then AB:=v1vkw1wlk+1V. A \wedge B := v_1 \wedge \cdots \wedge v_k \wedge w_1 \wedge \cdots \wedge w_l \in \wedge^{k+1} V.

Example of R3\R^3

Let V=R3V = \R^3, and equip VV with the standard inner product.

Cross product

Consider the 2V\wedge^2 V, its dimension is (32)=3{3 \choose 2} = 3, hence element of it are sometimes called pseudo-tensor. If we use the standard basis e1,e2,e3e_1, e_2, e_3 on VV, then we have the following basis for 2V\wedge^2 V: e1e2,e1e3,e2e3. e_1 \wedge e_2, \quad e_1 \wedge e_3, \quad e_2 \wedge e_3.

There is a bijection from 2VV\wedge^2 V \to V, called “Hodge star” \star, which goes as follows: :e1e2e3,e2e3e1,e3e1e2. \star: e_1 \wedge e_2 \mapsto e_3, \quad e_2 \wedge e_3 \mapsto e_1, \quad e_3 \wedge e_1 \mapsto e_2.

Thus, we may recover our familiar cross-product $\b v \times \b w$ formula as following V×V2VV. V \times V \xrightarrow{\wedge} \wedge^2 V \xrightarrow{\star} V.

Exercise: convince yourself that $\b v \wedge \b w = \star(\b v \wedge \b w)$.

Volume Forms and Determinant

For 3V\wedge^3 V, it is one-dimensional, with e1e2e3e_1 \wedge e_2 \wedge e_3 as a basis. Thus, element of V\wedge^* V are sometimes called pseudo-scalar.

Given three vectors v1,v2,v3v_1, v_2, v_3, how to compute the signed volume formed by the parallelogram P(v1,v2,v3)P(v_1, v_2, v_3) (skewed boxes) with sides v1,v2,v3v_1, v_2, v_3?

From vector calculus, we know the answer is the determinant of the 33 by 33 matrix, whose column-vectors are v1,v2,v3v_1, v_2, v_3.  Volume of P(v1,v2,v3)=det(v1,v2,v3)=det(v11v21v31v12v22v32v13v23v33) \text{ Volume of } P(v_1, v_2, v_3) = \det (v_1, v_2, v_3) = \det \begin{pmatrix} v_{11} & v_{21} & v_{31} \cr v_{12} & v_{22} & v_{32} \cr v_{13} & v_{23} & v_{33} \end{pmatrix}

Now, we have another way to express it.  Volume of P(v1,v2,v3)=v1v2v3e1e2e3 \text{ Volume of } P(v_1, v_2, v_3) = \frac{ v_1 \wedge v_2 \wedge v_3}{e_1 \wedge e_2 \wedge e_3} Indeed, since both the numerator and denominators are elements of the one-dim vector space 3V\wedge^3 V, the raio makes sense.

Levi-Cevita Symbol and Kronecker Symbol

These are two symbols introduced in Boas's book. We list their definitions and some properties.

The Kronecker symbol is used everywhere δij={1if i=j0if ij \delta_{ij} = \begin{cases} 1 & \text{if } i=j \cr 0 & \text{if } i \neq j \cr \end{cases}

The Levi-Cevita Symbol is a rank-3 tensor on R3\R^3. Its component with respect to the standard basis is ϵijk={1if ijk=123,231,3121if ijk=213,132,3210 if ijk has repeated indices  \epsilon_{ijk} = \begin{cases} 1 & \text{if } ijk=123,231,312 \cr -1 & \text{if } ijk = 213,132,321 \cr 0 & \text{ if $ijk$ has repeated indices } \end{cases}

For example, we can use ϵijk\epsilon_{ijk} to express the determinant det(v1,v2,v3)=ijkϵijkv1iv2jv3k.\det(v_1, v_2, v_3) = \sum_{ijk} \epsilon_{ijk} v_{1i} v_{2j} v_{3k}.

The Levi-Cevita symbol has generalization to higher dimension. It is a rank n tensor on Rn\R^n, i.e, it has nn indices. Let II denote the index. ϵI=1\epsilon_I=1 if II can be obtained from 12n12 \cdots n by even number of permutation, and ϵI=1\epsilon_I=-1 if II can be similarly obtained by odd number of permutations, and ϵI=0\epsilon_I=0 if there are repeated indices in II.

Another useful property is that iϵijkϵilm=δjlδkmδjmδkl \sum_i \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm} \delta_{kl}

math121b/01-29.txt · Last modified: 2020/01/29 10:44 (external edit)