User Tools

Site Tools


math121a-f23:september_25_monday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
math121a-f23:september_25_monday [2023/09/26 21:05]
pzhou
math121a-f23:september_25_monday [2023/09/26 21:16] (current)
pzhou
Line 20: Line 20:
 We can check z+z_+ is within the unit circle, zz_- is outside it. Hence to apply residue theorem, we get We can check z+z_+ is within the unit circle, zz_- is outside it. Hence to apply residue theorem, we get
 I=(2πi)(2/i)Resz=z+12z+ϵ(z2+1)= 4π2+2ϵz+=2π1ϵ2 I = (2\pi i) (2/i) Res_{z=z_+} \frac{1}{2z + \epsilon(z^2+1)} =  \frac{4\pi}{2 + 2 \epsilon z_+} = \frac{2\pi}{\sqrt{1-\epsilon^2}} I=(2πi)(2/i)Resz=z+12z+ϵ(z2+1)= 4π2+2ϵz+=2π1ϵ2 I = (2\pi i) (2/i) Res_{z=z_+} \frac{1}{2z + \epsilon(z^2+1)} =  \frac{4\pi}{2 + 2 \epsilon z_+} = \frac{2\pi}{\sqrt{1-\epsilon^2}}
 +
 +===== integration of real rational function =====
 +Consider 
 +011+x3dx\int_0^\infty \frac{1}{1+x^3} dx
 +We first truncate it to
 +I1,R=0R11+x3dxI_{1,R} = \int_0^R \frac{1}{1+x^3} dx
 +then I1=limRI1,RI_1 = \lim_{R \to \infty} I_{1,R} is what we want. 
 +
 +We next complete the integration contour to a full closed loop, by adding two more pieces of integral
 +  * $I_{2,R} = \int_{|z|=R, 0<\arg(z)<2\pi/3} \frac{1}{1+z^3} dz $
 +  * $I_{3,R} = \int_{z=r e^{i2\pi/3}, r=R}^0 \frac{1}{1+z^3} dz = e^{i2\pi/3} \int_{r=R}^0 \frac{1}{1+r^3} dr = - e^{i2\pi/3} I_{1,R}$
 +
 +We also know that
 +IR=I1,R+I2,R+I3,R=2πiResz=eπi/31z3=2πi13e2πi/3 I_R = I_{1,R} + I_{2,R} + I_{3,R} = 2\pi i Res_{z = e^{\pi i / 3}} \frac{1}{z^3} = 2\pi i \frac{1}{3 e^{2\pi i / 3} }
 +taking limit RR \to \infty, we can show (here I ignore it) that I3,R0I_{3,R} \to 0, then 
 + I_1 (1 -  e^{i2\pi/3})  = 2\pi i \frac{1}{3 e^{2\pi i / 3} }
 +hence
 +I1=2πi3(e2πi/3e4πi/3) I_1 = \frac{2\pi i}{3(e^{2\pi i/3} - e^{4\pi i/3} )}
 +
 +
math121a-f23/september_25_monday.1695787504.txt.gz · Last modified: 2023/09/26 21:05 by pzhou