User Tools

Site Tools


math121a-f23:september_25_monday

September 25 Monday

We talked about two integrals, one is θ=02π11+ϵcos(θ)dθ,0<ϵ1 \int_{\theta=0}^{2\pi} \frac{1}{1 + \epsilon \cos(\theta)} d\theta, 0 < \epsilon \ll 1 the other is x=011+xndx \int_{x=0}^\infty \frac{1}{1+x^n} dx

integration of trig function

Suppose we have a ration function involving sin(θ)\sin(\theta) and cos(θ)\cos(\theta), R(sinθ,cosθ)R(\sin \theta, \cos \theta), and we consider integral of the form θ=02πR(sinθ,cosθ)dθ \int_{\theta=0}^{2\pi} R(\sin \theta, \cos \theta) d \theta Then, we can replaced eiθ=ze^{i\theta} = z, let zz run on the unit circle.

  • cos(θ)=[eiθ+eiθ]/2\cos(\theta) = [e^{i\theta} + e^{-i\theta} ] / 2,
  • sin(θ)=[eiθeiθ]/2i\sin(\theta) = [e^{i\theta} - e^{-i\theta} ] / 2i,
  • dθ=dz/(iz)d\theta = dz/(iz).

Then we will get a rational function of zz as integrand, and the contour is the unit circle.

In our example, we get I=z=111+ϵ(z+1/z)/2dz/(iz)=(2/i)z=112z+ϵ(z2+1)dz I = \oint_{|z|=1} \frac{1}{1 + \epsilon (z+1/z)/2} dz/(iz) = (2/i) \oint_{|z|=1} \frac{1}{2z + \epsilon(z^2+1)} dz We found the integrand function has two poles at z±=2±44ϵ22ϵ=1±1ϵ2ϵ z_\pm = \frac{-2 \pm \sqrt{4 - 4\epsilon^2}}{2\epsilon} = \frac{-1 \pm \sqrt{1 - \epsilon^2}}{\epsilon} We can check z+z_+ is within the unit circle, zz_- is outside it. Hence to apply residue theorem, we get I=(2πi)(2/i)Resz=z+12z+ϵ(z2+1)=4π2+2ϵz+=2π1ϵ2 I = (2\pi i) (2/i) Res_{z=z_+} \frac{1}{2z + \epsilon(z^2+1)} = \frac{4\pi}{2 + 2 \epsilon z_+} = \frac{2\pi}{\sqrt{1-\epsilon^2}}

integration of real rational function

Consider 011+x3dx\int_0^\infty \frac{1}{1+x^3} dx We first truncate it to I1,R=0R11+x3dxI_{1,R} = \int_0^R \frac{1}{1+x^3} dx then I1=limRI1,RI_1 = \lim_{R \to \infty} I_{1,R} is what we want.

We next complete the integration contour to a full closed loop, by adding two more pieces of integral

  • I2,R=z=R,0<arg(z)<2π/311+z3dzI_{2,R} = \int_{|z|=R, 0<\arg(z)<2\pi/3} \frac{1}{1+z^3} dz
  • I3,R=z=rei2π/3,r=R011+z3dz=ei2π/3r=R011+r3dr=ei2π/3I1,RI_{3,R} = \int_{z=r e^{i2\pi/3}, r=R}^0 \frac{1}{1+z^3} dz = e^{i2\pi/3} \int_{r=R}^0 \frac{1}{1+r^3} dr = - e^{i2\pi/3} I_{1,R}

We also know that IR=I1,R+I2,R+I3,R=2πiResz=eπi/31z3=2πi13e2πi/3 I_R = I_{1,R} + I_{2,R} + I_{3,R} = 2\pi i Res_{z = e^{\pi i / 3}} \frac{1}{z^3} = 2\pi i \frac{1}{3 e^{2\pi i / 3} } taking limit RR \to \infty, we can show (here I ignore it) that I3,R0I_{3,R} \to 0, then I1(1ei2π/3)=2πi13e2πi/3 I_1 (1 - e^{i2\pi/3}) = 2\pi i \frac{1}{3 e^{2\pi i / 3} } hence I1=2πi3(e2πi/3e4πi/3) I_1 = \frac{2\pi i}{3(e^{2\pi i/3} - e^{4\pi i/3} )}

math121a-f23/september_25_monday.txt · Last modified: 2023/09/26 21:16 by pzhou