User Tools

Site Tools


math121a-f23:september_25_monday

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math121a-f23:september_25_monday [2023/09/26 17:51]
pzhou created
math121a-f23:september_25_monday [2023/09/26 21:16] (current)
pzhou
Line 1: Line 1:
 ====== September 25 Monday ====== ====== September 25 Monday ======
-We talked about two integrals, one +We talked about two integrals, one is  
- \int_{\theta=0}^{2\pi} \frac{1}{1 + \epsilon \cos(\theta)} d\theta + \int_{\theta=0}^{2\pi} \frac{1}{1 + \epsilon \cos(\theta)} d\theta, 0 < \epsilon \ll 1  
-The other is of the form+the other is
 x=011+xndx \int_{x=0}^\infty \frac{1}{1+x^n} dx  x=011+xndx \int_{x=0}^\infty \frac{1}{1+x^n} dx
  
 +===== integration of trig function =====
 +Suppose we have a ration function involving sin(θ)\sin(\theta) and cos(θ)\cos(\theta), R(sinθ,cosθ)R(\sin \theta, \cos \theta), and we consider integral of the form
 + θ=02πR(sinθ,cosθ)dθ  \int_{\theta=0}^{2\pi} R(\sin \theta, \cos \theta) d \theta
 +Then, we can replaced eiθ=ze^{i\theta} = z, let zz run on the unit circle. 
 +  * cos(θ)=[eiθ+eiθ]/2\cos(\theta) = [e^{i\theta} + e^{-i\theta} ] / 2,
 +  * sin(θ)=[eiθeiθ]/2i\sin(\theta) = [e^{i\theta} - e^{-i\theta} ] / 2i,
 +  * dθ=dz/(iz)d\theta = dz/(iz).
 +Then we will get a rational function of zz as integrand, and the contour is the unit circle. 
 +
 +In our example, we get
 +I=z=111+ϵ(z+1/z)/2dz/(iz)=(2/i) z=112z+ϵ(z2+1)dz I = \oint_{|z|=1} \frac{1}{1 + \epsilon (z+1/z)/2} dz/(iz) = (2/i)  \oint_{|z|=1} \frac{1}{2z + \epsilon(z^2+1)} dz
 +We found the integrand function has two poles at 
 +z±=2±44ϵ22ϵ=1±1ϵ2ϵ z_\pm = \frac{-2 \pm \sqrt{4 - 4\epsilon^2}}{2\epsilon} = \frac{-1 \pm \sqrt{1 - \epsilon^2}}{\epsilon}
 +We can check z+z_+ is within the unit circle, zz_- is outside it. Hence to apply residue theorem, we get
 +I=(2πi)(2/i)Resz=z+12z+ϵ(z2+1)= 4π2+2ϵz+=2π1ϵ2 I = (2\pi i) (2/i) Res_{z=z_+} \frac{1}{2z + \epsilon(z^2+1)} =  \frac{4\pi}{2 + 2 \epsilon z_+} = \frac{2\pi}{\sqrt{1-\epsilon^2}}
 +
 +===== integration of real rational function =====
 +Consider 
 +011+x3dx\int_0^\infty \frac{1}{1+x^3} dx
 +We first truncate it to
 +I1,R=0R11+x3dxI_{1,R} = \int_0^R \frac{1}{1+x^3} dx
 +then I1=limRI1,RI_1 = \lim_{R \to \infty} I_{1,R} is what we want. 
 +
 +We next complete the integration contour to a full closed loop, by adding two more pieces of integral
 +  * $I_{2,R} = \int_{|z|=R, 0<\arg(z)<2\pi/3} \frac{1}{1+z^3} dz $
 +  * $I_{3,R} = \int_{z=r e^{i2\pi/3}, r=R}^0 \frac{1}{1+z^3} dz = e^{i2\pi/3} \int_{r=R}^0 \frac{1}{1+r^3} dr = - e^{i2\pi/3} I_{1,R}$
 +
 +We also know that
 +IR=I1,R+I2,R+I3,R=2πiResz=eπi/31z3=2πi13e2πi/3 I_R = I_{1,R} + I_{2,R} + I_{3,R} = 2\pi i Res_{z = e^{\pi i / 3}} \frac{1}{z^3} = 2\pi i \frac{1}{3 e^{2\pi i / 3} }
 +taking limit RR \to \infty, we can show (here I ignore it) that I3,R0I_{3,R} \to 0, then 
 + I_1 (1 -  e^{i2\pi/3})  = 2\pi i \frac{1}{3 e^{2\pi i / 3} }
 +hence
 +I1=2πi3(e2πi/3e4πi/3) I_1 = \frac{2\pi i}{3(e^{2\pi i/3} - e^{4\pi i/3} )}
  
-For the first integral, we replaced cos(θ)=[eiθ+eiθ]/2\cos(\theta) = [e^{i\theta} + e^{-i\theta} ] / 2, then replace eiθ=ze^{i\theta} = z, dθ=dz/(iz)d\theta = dz/(iz)let zz run on the unit circle. We then get 
-z=111+ϵ(z+1/z)/2dz/(iz) \int_{|z|=1} \frac{1}{1 + \epsilon (z+1/z)/2} dz/(iz)  
  
math121a-f23/september_25_monday.1695775897.txt.gz · Last modified: 2023/09/26 17:51 by pzhou