Due on Monday (Oct 9th)
1. Find the Fourier transformation of the following function. $$ f(x) = \begin{cases} 1 & 0<x<1 \cr 0 & \text{else} \end{cases} $$
2. Find the Fourier transformation of the following function. $$ f(x) = \begin{cases} 1+x & -1<x<0 \cr 1-x & 0<x<1 \cr 0 & \text{else} \end{cases} $$
3. Let $f(x) = a / (x - i) + b / (x+i) + c / (x - 5i)$ for some complex numbers $a,b, c$.
4. Compute the inverse Fourier transform for $$ F(p) = \pi e^{-|p|} $$ you should get back $f(x) = 1/(1+x^2)$.
(my convention is $f(x) = \frac{1}{2\pi} \int F(p) e^{ipx} dp. $)