User Tools

Site Tools


math121a-f23:hw_6

Homework 6

Due on Monday (Oct 9th)

1. Find the Fourier transformation of the following function. f(x)={10<x<10else f(x) = \begin{cases} 1 & 0<x<1 \cr 0 & \text{else} \end{cases}

2. Find the Fourier transformation of the following function. f(x)={1+x1<x<01x0<x<10else f(x) = \begin{cases} 1+x & -1<x<0 \cr 1-x & 0<x<1 \cr 0 & \text{else} \end{cases}

3. Let f(x)=a/(xi)+b/(x+i)+c/(x5i)f(x) = a / (x - i) + b / (x+i) + c / (x - 5i) for some complex numbers a,b,ca,b, c.

  • Describe for what choices of a,b,ca,b,c the function f(x)f(x) is absolutely integrable.
  • Take a=2,b=1,c=1a=2, b=-1, c=-1, where we know f(x)f(x) is integrable, compute its Fourier transformation.

4. Compute the inverse Fourier transform for F(p)=πep F(p) = \pi e^{-|p|} you should get back f(x)=1/(1+x2)f(x) = 1/(1+x^2).

(my convention is f(x)=12πF(p)eipxdp.f(x) = \frac{1}{2\pi} \int F(p) e^{ipx} dp. )

math121a-f23/hw_6.txt · Last modified: 2023/10/06 12:06 by pzhou