User Tools

Site Tools


math105-s22:hw:hw8

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
math105-s22:hw:hw8 [2022/03/11 20:46]
pzhou
math105-s22:hw:hw8 [2022/03/11 20:50] (current)
pzhou
Line 11: Line 11:
   * (Hölder inequality), for p,q1p,q \geq 1 that $1/q+1/p=1$, we have    * (Hölder inequality), for p,q1p,q \geq 1 that $1/q+1/p=1$, we have 
  (\sum_{i=1}^n |x_i y_i|) \leq (\sum_i |x_i|^p)^{1/p} (\sum_i |y_i|^q)^{1/q}   (\sum_{i=1}^n |x_i y_i|) \leq (\sum_i |x_i|^p)^{1/p} (\sum_i |y_i|^q)^{1/q}
-  * (Minkowski inequality) for any p1p\geq 1, (\sum_{i=1}^n |x_i + y_i|^p)^{1/p} \leq (\sum_i |x_i|^p)^{1/p} +  (\sum_i |y_i|^q)^{1/q}   +  * (Minkowski inequality) for any p1p\geq 1, (\sum_{i=1}^n |x_i + y_i|^p)^{1/p} \leq (\sum_i |x_i|^p)^{1/p} +  (\sum_i |y_i|^p)^{1/p}  
  
 +Read about the proof (in wiki, or any textbook about functional analysis, say Folland). Why it works? 
  
  
  
math105-s22/hw/hw8.1647060419.txt.gz · Last modified: 2022/03/11 20:46 by pzhou