User Tools

Site Tools


math104-s22:hw:hw11

HW 11

Ross 34.2, 34.5, 34.7


Optional:

Rudin: Ex 15 (Hint: use 10( c ) ), 16

and an extra one:

Let f:[0,1]Rf:[0,1] \to \R be given by f(x)={0if x=0sin(1/x)if x(0,1]. f(x) = \begin{cases} 0 &\text{if } x = 0 \cr \sin(1/x) &\text{if } x \in (0,1] \end{cases}. And let α:[0,1]R\alpha: [0, 1] \to \R be given by α(x)={0if x=0nN,1/n<x2nif x(0,1]. \alpha(x) = \begin{cases} 0 &\text{if } x = 0 \cr \sum_{n \in \N, 1/n<x} 2^{-n} &\text{if } x \in (0,1] \end{cases}. Prove that ff is integrable with respect to α\alpha on [0,1][0,1]. Hint: prove that α(x)\alpha(x) is continuous at x=0x=0.

math104-s22/hw/hw11.txt · Last modified: 2022/04/23 19:01 by pzhou