User Tools

Site Tools


math104-s21:s:martinzhai

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math104-s21:s:martinzhai [2021/05/09 05:44]
173.205.95.2 [Questions]
math104-s21:s:martinzhai [2022/01/11 18:31] (current)
24.253.46.239 ↷ Links adapted because of a move operation
Line 360: Line 360:
   * **Sequence and Convergence of Functions**:   * **Sequence and Convergence of Functions**:
     * __Pointwise Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say (xn)n(x_n)_n converges to xRNx\isin \Reals^{\natnums} pointwise if iN\forall i\isin \natnums, we have limnxni=xi\lim_{n\to\infty} x_{ni} = x_i.     * __Pointwise Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say (xn)n(x_n)_n converges to xRNx\isin \Reals^{\natnums} pointwise if iN\forall i\isin \natnums, we have limnxni=xi\lim_{n\to\infty} x_{ni} = x_i.
-      * Example: xni=in+ix_{ni} = \frac{i}{n+i}, then this sequence of sequences converge to 00 pointwise, since for arbitrary fixed ii, we have limnxni=limnin+i=0\lim_{n\to\infty} x_{ni} = \lim_{n\to\infty} \frac{i}{n+i} = 0.+      * Example: xni=in+ix_{ni} = \frac{i}{n+i}, then this seq to 00 pointwise, since for arbitrary fixed ii, we have limnxni=limnin+i=0\lim_{n\to\infty} x_{ni} = \lim_{n\to\infty} \frac{i}{n+i} = 0.
     * __Uniform Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say xnxx_n \rightarrow x uniformly if ϵ>0\forall \epsilon >0, N>0\exists N>0 such that n>N\forall n>N, $\sup\{\lvert x_{ni} - x_i \rvert :\, i\isin\natnums\} <\epsilon(alsoknownas (also known as d_{\infty}(x_n, x)$).     * __Uniform Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say xnxx_n \rightarrow x uniformly if ϵ>0\forall \epsilon >0, N>0\exists N>0 such that n>N\forall n>N, $\sup\{\lvert x_{ni} - x_i \rvert :\, i\isin\natnums\} <\epsilon(alsoknownas (also known as d_{\infty}(x_n, x)$).
       * Non-Example: xni=in+ix_{ni} = \frac{i}{n+i} failed to converge uniformly to 00, since $d_{\infty}(x_n,0) = \sup \{\lvert x_{ni} \rvert :\, i\isin\natnums\} = \sup \{\frac{i}{n+i}:\, i\isin\natnums\} = 1$ (n is fixed).       * Non-Example: xni=in+ix_{ni} = \frac{i}{n+i} failed to converge uniformly to 00, since $d_{\infty}(x_n,0) = \sup \{\lvert x_{ni} \rvert :\, i\isin\natnums\} = \sup \{\frac{i}{n+i}:\, i\isin\natnums\} = 1$ (n is fixed).
     * __Pointwise Convergence of Sequence of Functions__: Given a sequence of functions fnf_n \isin Map$(\Reals, \Reals),wesay, we say f_nconvergeto converge to fpointwiseif pointwise if \forall x\isin\Reals$, limnfn(x)=f(x)    limnfn(x)f(x)=0\lim_{n\to\infty} f_n(x) = f(x) \iff \lim_{n\to\infty} \lvert f_n(x) - f(x) \rvert = 0.     * __Pointwise Convergence of Sequence of Functions__: Given a sequence of functions fnf_n \isin Map$(\Reals, \Reals),wesay, we say f_nconvergeto converge to fpointwiseif pointwise if \forall x\isin\Reals$, limnfn(x)=f(x)    limnfn(x)f(x)=0\lim_{n\to\infty} f_n(x) = f(x) \iff \lim_{n\to\infty} \lvert f_n(x) - f(x) \rvert = 0.
       * Examples:Running and Shrinking Bumps.       * Examples:Running and Shrinking Bumps.
-{{ :math104:s:img_d0796d4b49e0-1.jpeg?400 |}}+{{ math104-s21:s:img_d0796d4b49e0-1.jpeg?400 |}}
  
 === Lecture 18 (Mar 18) - Covered Rudin Chapter 7 === === Lecture 18 (Mar 18) - Covered Rudin Chapter 7 ===
Line 374: Line 374:
     * __Rudin 7.8__: Suppose fn:XRf_n: X\rightarrow \Reals satisfies that $\forall \epsilon >0,\exists N>0suchthat such that \forall x\isin X, \lvert f_n(x) - f_m(x) \rvert < \epsilon,then, then f_nconvergesuniformly(UniformCauchy converges uniformly (Uniform Cauchy \iff$ Uniform Convergence).     * __Rudin 7.8__: Suppose fn:XRf_n: X\rightarrow \Reals satisfies that $\forall \epsilon >0,\exists N>0suchthat such that \forall x\isin X, \lvert f_n(x) - f_m(x) \rvert < \epsilon,then, then f_nconvergesuniformly(UniformCauchy converges uniformly (Uniform Cauchy \iff$ Uniform Convergence).
     * __Rudin 7.9__: Suppose fnff_n\rightarrow f pointwise, then fnff_n \rightarrow f uniformly     limn(supfn(x)f(x))=0\iff \lim_{n\to\infty} (\sup \lvert f_n(x) - f(x) \rvert) = 0.     * __Rudin 7.9__: Suppose fnff_n\rightarrow f pointwise, then fnff_n \rightarrow f uniformly     limn(supfn(x)f(x))=0\iff \lim_{n\to\infty} (\sup \lvert f_n(x) - f(x) \rvert) = 0.
 +    * A sequence of functions {fn}\{ f_n\} is uniformly convergent to $f:D\to\Reals\iff \lim_{n\to\infty} \sup \{\lvert f_n(x) - f(x) \rvert : x\isin D\}$.
     * __Rudin 7.10 (Weiestrass M-Test)__: Suppose f(x)=n=1fn(x)xXf(x) = \sum_{n=1}^{\infty} f_n(x)\, \forall x\isin X. If Mn>0\exists M_n>0 such that supxfn(x)Mn\sup_x \lvert f_n(x) \rvert \leq M_n and nMn<\sum_{n} M_n < \infty, then the partial sum FN(x)=n=1Nfn(x)F_N(x)=\sum_{n=1}^{N} f_n(x) converges to f(x)f(x) uniformly.     * __Rudin 7.10 (Weiestrass M-Test)__: Suppose f(x)=n=1fn(x)xXf(x) = \sum_{n=1}^{\infty} f_n(x)\, \forall x\isin X. If Mn>0\exists M_n>0 such that supxfn(x)Mn\sup_x \lvert f_n(x) \rvert \leq M_n and nMn<\sum_{n} M_n < \infty, then the partial sum FN(x)=n=1Nfn(x)F_N(x)=\sum_{n=1}^{N} f_n(x) converges to f(x)f(x) uniformly.
       * Example: See last question on Midterm 2 version A.       * Example: See last question on Midterm 2 version A.
   ***Uniform Convergence and Continuity**:   ***Uniform Convergence and Continuity**:
-    * __Rudin 7.11__: Suppose fnff_n \rightarrow f uniformly on set EE in a metric space. Let xx be a limit point of EE, and suppose that limtxfn(t)=An\lim_{t\to x} f_n(t) = A_n. Then {An}\{ A_n\} converges and limtxf(t)=limnAn\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n. In conclusion, limtxlimnfn(t)=limnlimtxfn(t)\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t).+    * __Rudin 7.11__: Suppose fnff_n \rightarrow f uniformly on set EE in a metric space.  of EE, and suppose that limtxfn(t)=An\lim_{t\to x} f_n(t) = A_n. Then {An}\{ A_n\} converges and limtxf(t)=limnAn\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n. In conclusion, limtxlimnfn(t)=limnlimtxfn(t)\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t).
     * __Rudin 7.12__: If {fn}\{f_n\} is a sequence of continuous functions on EE, and if fnff_n\rightarrow f uniformly on EE, then ff is continuous on EE.     * __Rudin 7.12__: If {fn}\{f_n\} is a sequence of continuous functions on EE, and if fnff_n\rightarrow f uniformly on EE, then ff is continuous on EE.
     * __Rudin 7.13__: Suppose KK compact and     * __Rudin 7.13__: Suppose KK compact and
Line 465: Line 466:
       * Example: [10,20]R[10, 20]\subset \Reals, then a partition would be P={10,15,18,19,20}P = \{10, 15, 18, 19, 20\}.       * Example: [10,20]R[10, 20]\subset \Reals, then a partition would be P={10,15,18,19,20}P = \{10, 15, 18, 19, 20\}.
     * __U(P,f) and L(P,f)__: Given f:[a,b]Rf:[a,b]\to \Reals bounded, and partion p={x0x1...xn}p = \{x_0 \leq x_1 \leq ... \leq x_n\}, we define U(P,f)=i=1nΔxiMiU(P,f) = \sum_{i=1}^{n} \Delta x_i M_i where $M_i= \sup \{f(x), x\isin [x_{i-1},x_i]\}$; L(P,f)=i=1nΔximiL(P,f) = \sum_{i=1}^{n} \Delta x_i m_i where $m_i= \inf \{f(x), x\isin [x_{i-1},x_i]\}$.     * __U(P,f) and L(P,f)__: Given f:[a,b]Rf:[a,b]\to \Reals bounded, and partion p={x0x1...xn}p = \{x_0 \leq x_1 \leq ... \leq x_n\}, we define U(P,f)=i=1nΔxiMiU(P,f) = \sum_{i=1}^{n} \Delta x_i M_i where $M_i= \sup \{f(x), x\isin [x_{i-1},x_i]\}$; L(P,f)=i=1nΔximiL(P,f) = \sum_{i=1}^{n} \Delta x_i m_i where $m_i= \inf \{f(x), x\isin [x_{i-1},x_i]\}$.
-{{ :math104:s:img_0a0c56a64ed8-1.jpeg?400 |}}+{{ math104-s21:s:img_0a0c56a64ed8-1.jpeg?400 |}}
     * __U(f) and L(f)__: Define U(f)=infPU(P,f)U(f) = \inf_{P} U(P,f) and L(f)=supPL(P,f)L(f)= \sup_{P} L(P,f).     * __U(f) and L(f)__: Define U(f)=infPU(P,f)U(f) = \inf_{P} U(P,f) and L(f)=supPL(P,f)L(f)= \sup_{P} L(P,f).
       * Since ff is bounded, hence m,MR\exists m,M\isin \Reals such that mf(x)Mm\leq f(x)\leq M for all x[a,b]x\isin [a,b], then P\forall P partition of [a,b][a,b], U(P,f)i=1nΔxiM=M(ba)U(P,f) \leq \sum_{i=1}^{n} \Delta x_i M = M(b-a), and L(P,f)m(ba)L(P,f) \geq m(b-a), and m(ba)L(P,f)leqU(P,f)M(ba)m(b-a)\leq L(P,f) leq U(P,f) \leq M(b-a).       * Since ff is bounded, hence m,MR\exists m,M\isin \Reals such that mf(x)Mm\leq f(x)\leq M for all x[a,b]x\isin [a,b], then P\forall P partition of [a,b][a,b], U(P,f)i=1nΔxiM=M(ba)U(P,f) \leq \sum_{i=1}^{n} \Delta x_i M = M(b-a), and L(P,f)m(ba)L(P,f) \geq m(b-a), and m(ba)L(P,f)leqU(P,f)M(ba)m(b-a)\leq L(P,f) leq U(P,f) \leq M(b-a).
Line 535: Line 536:
     *__Rudin 7.16__: Let α\alpha be monotone increasing on [a,b][a,b]. Suppose fnR(α)f_n\isin\mathscr{R}(\alpha), and fnff_n\to f uniformly on [a,b][a,b]. Then ff is integrable and abfdα=limnabfndα\int_{a}^{b} fd\alpha = \lim_{n\to\infty} \int_{a}^{b} f_n d\alpha.     *__Rudin 7.16__: Let α\alpha be monotone increasing on [a,b][a,b]. Suppose fnR(α)f_n\isin\mathscr{R}(\alpha), and fnff_n\to f uniformly on [a,b][a,b]. Then ff is integrable and abfdα=limnabfndα\int_{a}^{b} fd\alpha = \lim_{n\to\infty} \int_{a}^{b} f_n d\alpha.
     *__Corollary__: Suppose fnR(α)f_n\isin\mathscr{R}(\alpha) and F(x)=n=1fn(x)F(x) = \sum_{n=1}^{\infty} f_n(x), the series converges uniformly, then FR(α)F\isin\mathscr{R}(\alpha) and abF(x)dα=n=1abfn(x)dα\int_{a}^{b} F(x)d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)d\alpha.     *__Corollary__: Suppose fnR(α)f_n\isin\mathscr{R}(\alpha) and F(x)=n=1fn(x)F(x) = \sum_{n=1}^{\infty} f_n(x), the series converges uniformly, then FR(α)F\isin\mathscr{R}(\alpha) and abF(x)dα=n=1abfn(x)dα\int_{a}^{b} F(x)d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)d\alpha.
-    *__Theorem__: Suppose $\{ f_N \}isasequenceofdifferentiablefunctionson is a sequence of differentiable functions on [a,b]suchthat such that f_n'(x)convergesuniformlyto converges uniformly to g(x)and and \exists x_o\isin [a,b]suchthat such that \{f_n(x_o)\}converges.Then converges. Then f_n(x)convergestosomefunction converges to some function funiformlyand uniformly and f'(x)=g(x)=\lim_{n\to\infty} f_n'(x)$.+    *__Theorem__: Suppose $\{ f_n \}isasequenceofdifferentiablefunctionson is a sequence of differentiable functions on [a,b]suchthat such that f_n'(x)convergesuniformlyto converges uniformly to g(x)and and \exists x_o\isin [a,b]suchthat such that \{f_n(x_o)\}converges.Then converges. Then f_n(x)convergestosomefunction converges to some function funiformlyand uniformly and f'(x)=g(x)=\lim_{n\to\infty} f_n'(x)$.
  
 ==== Questions ==== ==== Questions ====
-  - {{:math104:s:img_769dec51bb88-1.jpeg?400|}} I understand the visualization of this recursive sequence, but  to 5\sqrt{5}?+  - {{math104-s21:s:img_769dec51bb88-1.jpeg?400|}} I understand the visualization of this recursive sequence, but  to 5\sqrt{5}?
   - In general, how to prove a set is infinite(in order to use theorem 11.2 in Ross)?   - In general, how to prove a set is infinite(in order to use theorem 11.2 in Ross)?
   - Is there a way/analogy to understand/visualize the closure of a set?   - Is there a way/analogy to understand/visualize the closure of a set?
   - Is there a way to actually test if a set is compact or not instead of merely finding finite subcovers for all open covers?   - Is there a way to actually test if a set is compact or not instead of merely finding finite subcovers for all open covers?
   - Rudin 4.6 states that if pEp\isin E, a limit point, and ff is continuous at pp if and only if limxpf(x)=f(p)\lim_{x\to p} f(x) = f(p). Does this theorem hold for pEp\isin E but not a limit point of EE?   - Rudin 4.6 states that if pEp\isin E, a limit point, and ff is continuous at pp if and only if limxpf(x)=f(p)\lim_{x\to p} f(x) = f(p). Does this theorem hold for pEp\isin E but not a limit point of EE?
-  - {{:math104:s:img_0324.jpg?400|}} How is the claim at the bottom proved?+  - {{math104-s21:s:img_0324.jpg?400|}} How is the claim at the bottom proved?
   - Could we regard the global maximum as the maximum of all local minimums?   - Could we regard the global maximum as the maximum of all local minimums?
   - Under what circumstance would Taylor Theorem be essential to our proof, since for the question appeared in HW11 Q2, I really do not think using Taylor Theorem is a better way to prove the claim?   - Under what circumstance would Taylor Theorem be essential to our proof, since for the question appeared in HW11 Q2, I really do not think using Taylor Theorem is a better way to prove the claim?
Line 557: Line 558:
   - Is there any covering for a compact set that satisfies total length of the finite subcovers for the set is less than ba\lvert b-a \rvert? (Answer is no)   - Is there any covering for a compact set that satisfies total length of the finite subcovers for the set is less than ba\lvert b-a \rvert? (Answer is no)
   - Question 16 on Prof Fan's practice exam.   - Question 16 on Prof Fan's practice exam.
-  - This is my solutions towards the practice exam: {{ :math104:s:practice_exam.pdf |}}+  - This is my solutions towards the practice exam: {{ math104-s21:s:practice_solutions.pdf |}}
math104-s21/s/martinzhai.1620564285.txt.gz · Last modified: 2021/05/09 05:44 by 173.205.95.2