Weight Function: Let $\alpha: [a.b]\to\Reals$ be a monotone increasing function, then $\alpha$ could be referred to as a weight function for Stieltjes Integral. We refer to $\Delta \alpha _i = \alpha(x_i) - \alpha(x_{i-1})$.
Basic Notions: Similar to what we defined in Riemann Integral, we define $U(P,f,\alpha) = \sum_{i=1}^{n} M_i \Delta\alpha_i$ and $L(P,f,\alpha) = \sum_{i=1}^{n} m_i \Delta\alpha_i$.
Stilejes Integrable: If $U(f,\alpha) = L(f,\alpha)$, we say $f$ is integrable with respect to $\alpha$ and write $f\isin \mathscr{R}(\alpha)$ on $[a,b]$.
Remark: If $\forall x\isin [a,b]$, $m\leq f(x)\leq M$, then $m (\alpha(b)-\alpha(a)) \leq L(P,f,\alpha) \leq U(P,f,\alpha) \leq M(\alpha(b) - \alpha(a))$.
Refinement: Let $P$ and $Q$ be 2 partitions of $[a,b]$, then $P$ and $Q$ can be identifies as a finite subset of $[a,b]$. We say $Q$ is a refinement of $P$ if $P\subset Q$ as subsets of $[a,b]$.
Example: $[a,b]=[0,10]$. Let $P = \{ 0, 1, 2,3,4,5,6,7,8,9,10\}$, and $Q=\{0, 0.5, 1, 1.5,2,3,4,5,6,7,8,9,9.9,10\}$. We could claim that $Q$ is a refinement of $P$ on $[0,10]$.
Common Refinement: Let $P_1$ and $P_2$ be 2 partitions of $[a,b]$, then $P_1 \cup P_2$ is the common refinement of $P_1$ and $P_2$.
Rudin 6.4: If $P'$ is a refinement of $P$, then $L(P',f,\alpha) \leq L(P,f,\alpha)$ and $U(P',f,\alpha) \leq U(P,f,\alpha)$.
Rudin 6.5: $L(f,\alpha) \leq U(f,\alpha)$.
Rudin 6.6(Cauchy Condition): $f\isin \mathscr{R}(\alpha) \iff \forall \epsilon >0, \exists P$ partition such that $U(P,f,\alpha)-L(P,f,\alpha) < \epsilon$.
Rudin 6.7:
If Rudin 6.6 holds for $P$, then for any refinement $Q$ of $P$, $U(Q,f,\alpha)-L(Q,f,\alpha) < \epsilon$.
If Rudin 6.6 holds for $P$, and let $s_i, t_i\isin [x_{i-1},x_i] \forall i = 1,2,…,n$, then $\sum_{i=1}^{n} \lvert f(s_i) - f(t_i) \rvert \Delta\alpha_i < \epsilon$.
If $f\isin\mathscr{R}(\alpha)$ and the above holds, then $\sum_{i=1}^{n} \lvert f(s_i) \Delta\alpha_i - \int fd\alpha \rvert < \epsilon$.
Rudin 6.8: If $f$ is continuous on $[a,b]$, then $f\isin\mathscr{R}(\alpha)$ on $[a,b]$.
Rudin 6.9: If $f$ is monotonic on $[a,b]$ and $\alpha$ is continuous, then $f\isin \mathscr{R}(\alpha)$.