User Tools

Site Tools


math104-s21:s:martinzhai

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math104-s21:s:martinzhai [2021/05/06 01:51]
66.154.105.2 [Week 12]
math104-s21:s:martinzhai [2022/01/11 18:31] (current)
24.253.46.239 ↷ Links adapted because of a move operation
Line 161: Line 161:
     * __Theorem 13.5 (Bolzano-Weiestrass Theorem for Rn\Reals^n)__: Every bounded sequence (sm)mRn(s_m)_m \isin \Reals^n has a convergent subsequence.     * __Theorem 13.5 (Bolzano-Weiestrass Theorem for Rn\Reals^n)__: Every bounded sequence (sm)mRn(s_m)_m \isin \Reals^n has a convergent subsequence.
     * __Topology__: Let SS be a set. A topological structure on SS is the data of a collection of subsets in S. This collection needs to satisfy:     * __Topology__: Let SS be a set. A topological structure on SS is the data of a collection of subsets in S. This collection needs to satisfy:
-      - SS and $\text{\o} are open+      - SS and $\text{\o}are open
       - arbitrary union of open subsets is still open       - arbitrary union of open subsets is still open
       - finite intersections of open sets are open       - finite intersections of open sets are open
Line 309: Line 309:
   ***Uniform Continuity**:   ***Uniform Continuity**:
     *__Uniform Continuous Function__: $f:X\rightarrow Y.Supposeforall. Suppose for all \epsilon >0,, \exists \delta >0suchthat such that \forall p,q\isin Xwith with d_X(p,q)<\delta$, we have $d_Y(f(p),f(q)) <\epsilon.Thenwesay. Then we say f$ is a uniform continuous function.     *__Uniform Continuous Function__: $f:X\rightarrow Y.Supposeforall. Suppose for all \epsilon >0,, \exists \delta >0suchthat such that \forall p,q\isin Xwith with d_X(p,q)<\delta$, we have $d_Y(f(p),f(q)) <\epsilon.Thenwesay. Then we say f$ is a uniform continuous function.
-      *Example: f:[0,1]Rf:[0,1] \rightarrow \Reals and f(x)=x2f(x)=x^2. Then ff is uniformly continuous function. ϵ>0\forall \epsilon >0, we can take δ=ϵ2\delta=\frac{\epsilon}{2}, then p,q[0,1]\forall p,q \isin [0,1], pq<δ\lvert p-q \rvert < \delta we have $\lvert p^2-q^2 \rvert = \lvert (p-q)(p+q) \rvert = \lvert (p-q) \rvert \lvert (p+q) \rvert < \delta * 2 = \epsilon.+      *Example: f:[0,1]Rf:[0,1] \rightarrow \Reals and f(x)=x2f(x)=x^2. Then ff is uniformly continuous function. ϵ>0\forall \epsilon >0, we can take δ=ϵ2\delta=\frac{\epsilon}{2}, then p,q[0,1]\forall p,q \isin [0,1], pq<δ\lvert p-q \rvert < \delta we have $\lvert p^2-q^2 \rvert = \lvert (p-q)(p+q) \rvert = \lvert (p-q) \rvert \lvert (p+q) \rvert < \delta * 2 = \epsilon$.
       *Non-Example 1: f:RRf:\Reals \rightarrow \Reals and f(x)=x2f(x)=x^2. Then ff is not uniformly continuous. δ>0\delta > 0 , we could always find p,qRp,q\isin \Reals and pq<δ\lvert p-q \rvert < \delta such that f(p)f(q)=1\lvert f(p) - f(q) \rvert = 1. If we take pq=δ2p-q = \frac{\delta}{2} and p+q=2δp+q = \frac{2}{\delta}, then f(p)f(q)=p2q2=(pq)(p+q)=(pq)(p+q)=δ22δ=1\lvert f(p) - f(q)\rvert = \lvert p^2-q^2 \rvert = \lvert (p-q)(p+q) \rvert = \lvert (p-q) \rvert \lvert (p+q) \rvert = \frac{\delta}{2} * \frac{2}{\delta} = 1.       *Non-Example 1: f:RRf:\Reals \rightarrow \Reals and f(x)=x2f(x)=x^2. Then ff is not uniformly continuous. δ>0\delta > 0 , we could always find p,qRp,q\isin \Reals and pq<δ\lvert p-q \rvert < \delta such that f(p)f(q)=1\lvert f(p) - f(q) \rvert = 1. If we take pq=δ2p-q = \frac{\delta}{2} and p+q=2δp+q = \frac{2}{\delta}, then f(p)f(q)=p2q2=(pq)(p+q)=(pq)(p+q)=δ22δ=1\lvert f(p) - f(q)\rvert = \lvert p^2-q^2 \rvert = \lvert (p-q)(p+q) \rvert = \lvert (p-q) \rvert \lvert (p+q) \rvert = \frac{\delta}{2} * \frac{2}{\delta} = 1.
       *Non-Example 2: f:(0,)Rf:(0, \infty) \rightarrow \Reals, f(x)=1xf(x)=\frac{1}{x} is not uniformly continuous. Intuition: when x0x\rightarrow 0, then distance between two points p,qp,q may be close enough but 1p1q\lvert \frac{1}{p} - \frac{1}{q} \rvert may be large.       *Non-Example 2: f:(0,)Rf:(0, \infty) \rightarrow \Reals, f(x)=1xf(x)=\frac{1}{x} is not uniformly continuous. Intuition: when x0x\rightarrow 0, then distance between two points p,qp,q may be close enough but 1p1q\lvert \frac{1}{p} - \frac{1}{q} \rvert may be large.
Line 360: Line 360:
   * **Sequence and Convergence of Functions**:   * **Sequence and Convergence of Functions**:
     * __Pointwise Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say (xn)n(x_n)_n converges to xRNx\isin \Reals^{\natnums} pointwise if iN\forall i\isin \natnums, we have limnxni=xi\lim_{n\to\infty} x_{ni} = x_i.     * __Pointwise Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say (xn)n(x_n)_n converges to xRNx\isin \Reals^{\natnums} pointwise if iN\forall i\isin \natnums, we have limnxni=xi\lim_{n\to\infty} x_{ni} = x_i.
-      * Example: xni=in+ix_{ni} = \frac{i}{n+i}, then this sequence of sequences converge to 00 pointwise, since for arbitrary fixed ii, we have limnxni=limnin+i=0\lim_{n\to\infty} x_{ni} = \lim_{n\to\infty} \frac{i}{n+i} = 0.+      * Example: xni=in+ix_{ni} = \frac{i}{n+i}, then this seq to 00 pointwise, since for arbitrary fixed ii, we have limnxni=limnin+i=0\lim_{n\to\infty} x_{ni} = \lim_{n\to\infty} \frac{i}{n+i} = 0.
     * __Uniform Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say xnxx_n \rightarrow x uniformly if ϵ>0\forall \epsilon >0, N>0\exists N>0 such that n>N\forall n>N, $\sup\{\lvert x_{ni} - x_i \rvert :\, i\isin\natnums\} <\epsilon(alsoknownas (also known as d_{\infty}(x_n, x)$).     * __Uniform Convergence of Sequence of Sequences__: Let (xn)n(x_n)_n be a sequence of sequences, xnRNx_n\isin \Reals^{\natnums}, we say xnxx_n \rightarrow x uniformly if ϵ>0\forall \epsilon >0, N>0\exists N>0 such that n>N\forall n>N, $\sup\{\lvert x_{ni} - x_i \rvert :\, i\isin\natnums\} <\epsilon(alsoknownas (also known as d_{\infty}(x_n, x)$).
       * Non-Example: xni=in+ix_{ni} = \frac{i}{n+i} failed to converge uniformly to 00, since $d_{\infty}(x_n,0) = \sup \{\lvert x_{ni} \rvert :\, i\isin\natnums\} = \sup \{\frac{i}{n+i}:\, i\isin\natnums\} = 1$ (n is fixed).       * Non-Example: xni=in+ix_{ni} = \frac{i}{n+i} failed to converge uniformly to 00, since $d_{\infty}(x_n,0) = \sup \{\lvert x_{ni} \rvert :\, i\isin\natnums\} = \sup \{\frac{i}{n+i}:\, i\isin\natnums\} = 1$ (n is fixed).
     * __Pointwise Convergence of Sequence of Functions__: Given a sequence of functions fnf_n \isin Map$(\Reals, \Reals),wesay, we say f_nconvergeto converge to fpointwiseif pointwise if \forall x\isin\Reals$, limnfn(x)=f(x)    limnfn(x)f(x)=0\lim_{n\to\infty} f_n(x) = f(x) \iff \lim_{n\to\infty} \lvert f_n(x) - f(x) \rvert = 0.     * __Pointwise Convergence of Sequence of Functions__: Given a sequence of functions fnf_n \isin Map$(\Reals, \Reals),wesay, we say f_nconvergeto converge to fpointwiseif pointwise if \forall x\isin\Reals$, limnfn(x)=f(x)    limnfn(x)f(x)=0\lim_{n\to\infty} f_n(x) = f(x) \iff \lim_{n\to\infty} \lvert f_n(x) - f(x) \rvert = 0.
       * Examples:Running and Shrinking Bumps.       * Examples:Running and Shrinking Bumps.
-{{ :math104:s:img_d0796d4b49e0-1.jpeg?400 |}}+{{ math104-s21:s:img_d0796d4b49e0-1.jpeg?400 |}}
  
 === Lecture 18 (Mar 18) - Covered Rudin Chapter 7 === === Lecture 18 (Mar 18) - Covered Rudin Chapter 7 ===
Line 374: Line 374:
     * __Rudin 7.8__: Suppose fn:XRf_n: X\rightarrow \Reals satisfies that $\forall \epsilon >0,\exists N>0suchthat such that \forall x\isin X, \lvert f_n(x) - f_m(x) \rvert < \epsilon,then, then f_nconvergesuniformly(UniformCauchy converges uniformly (Uniform Cauchy \iff$ Uniform Convergence).     * __Rudin 7.8__: Suppose fn:XRf_n: X\rightarrow \Reals satisfies that $\forall \epsilon >0,\exists N>0suchthat such that \forall x\isin X, \lvert f_n(x) - f_m(x) \rvert < \epsilon,then, then f_nconvergesuniformly(UniformCauchy converges uniformly (Uniform Cauchy \iff$ Uniform Convergence).
     * __Rudin 7.9__: Suppose fnff_n\rightarrow f pointwise, then fnff_n \rightarrow f uniformly     limn(supfn(x)f(x))=0\iff \lim_{n\to\infty} (\sup \lvert f_n(x) - f(x) \rvert) = 0.     * __Rudin 7.9__: Suppose fnff_n\rightarrow f pointwise, then fnff_n \rightarrow f uniformly     limn(supfn(x)f(x))=0\iff \lim_{n\to\infty} (\sup \lvert f_n(x) - f(x) \rvert) = 0.
 +    * A sequence of functions {fn}\{ f_n\} is uniformly convergent to $f:D\to\Reals\iff \lim_{n\to\infty} \sup \{\lvert f_n(x) - f(x) \rvert : x\isin D\}$.
     * __Rudin 7.10 (Weiestrass M-Test)__: Suppose f(x)=n=1fn(x)xXf(x) = \sum_{n=1}^{\infty} f_n(x)\, \forall x\isin X. If Mn>0\exists M_n>0 such that supxfn(x)Mn\sup_x \lvert f_n(x) \rvert \leq M_n and nMn<\sum_{n} M_n < \infty, then the partial sum FN(x)=n=1Nfn(x)F_N(x)=\sum_{n=1}^{N} f_n(x) converges to f(x)f(x) uniformly.     * __Rudin 7.10 (Weiestrass M-Test)__: Suppose f(x)=n=1fn(x)xXf(x) = \sum_{n=1}^{\infty} f_n(x)\, \forall x\isin X. If Mn>0\exists M_n>0 such that supxfn(x)Mn\sup_x \lvert f_n(x) \rvert \leq M_n and nMn<\sum_{n} M_n < \infty, then the partial sum FN(x)=n=1Nfn(x)F_N(x)=\sum_{n=1}^{N} f_n(x) converges to f(x)f(x) uniformly.
       * Example: See last question on Midterm 2 version A.       * Example: See last question on Midterm 2 version A.
   ***Uniform Convergence and Continuity**:   ***Uniform Convergence and Continuity**:
-    * __Rudin 7.11__: Suppose fnff_n \rightarrow f uniformly on set EE in a metric space. Let xx be a limit point of EE, and suppose that limtxfn(t)=An\lim_{t\to x} f_n(t) = A_n. Then {An}\{ A_n\} converges and limtxf(t)=limnAn\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n. In conclusion, limtxlimnfn(t)=limnlimtxfn(t)\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t).+    * __Rudin 7.11__: Suppose fnff_n \rightarrow f uniformly on set EE in a metric space.  of EE, and suppose that limtxfn(t)=An\lim_{t\to x} f_n(t) = A_n. Then {An}\{ A_n\} converges and limtxf(t)=limnAn\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n. In conclusion, limtxlimnfn(t)=limnlimtxfn(t)\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t).
     * __Rudin 7.12__: If {fn}\{f_n\} is a sequence of continuous functions on EE, and if fnff_n\rightarrow f uniformly on EE, then ff is continuous on EE.     * __Rudin 7.12__: If {fn}\{f_n\} is a sequence of continuous functions on EE, and if fnff_n\rightarrow f uniformly on EE, then ff is continuous on EE.
     * __Rudin 7.13__: Suppose KK compact and     * __Rudin 7.13__: Suppose KK compact and
Line 465: Line 466:
       * Example: [10,20]R[10, 20]\subset \Reals, then a partition would be P={10,15,18,19,20}P = \{10, 15, 18, 19, 20\}.       * Example: [10,20]R[10, 20]\subset \Reals, then a partition would be P={10,15,18,19,20}P = \{10, 15, 18, 19, 20\}.
     * __U(P,f) and L(P,f)__: Given f:[a,b]Rf:[a,b]\to \Reals bounded, and partion p={x0x1...xn}p = \{x_0 \leq x_1 \leq ... \leq x_n\}, we define U(P,f)=i=1nΔxiMiU(P,f) = \sum_{i=1}^{n} \Delta x_i M_i where $M_i= \sup \{f(x), x\isin [x_{i-1},x_i]\}$; L(P,f)=i=1nΔximiL(P,f) = \sum_{i=1}^{n} \Delta x_i m_i where $m_i= \inf \{f(x), x\isin [x_{i-1},x_i]\}$.     * __U(P,f) and L(P,f)__: Given f:[a,b]Rf:[a,b]\to \Reals bounded, and partion p={x0x1...xn}p = \{x_0 \leq x_1 \leq ... \leq x_n\}, we define U(P,f)=i=1nΔxiMiU(P,f) = \sum_{i=1}^{n} \Delta x_i M_i where $M_i= \sup \{f(x), x\isin [x_{i-1},x_i]\}$; L(P,f)=i=1nΔximiL(P,f) = \sum_{i=1}^{n} \Delta x_i m_i where $m_i= \inf \{f(x), x\isin [x_{i-1},x_i]\}$.
-{{ :math104:s:img_0a0c56a64ed8-1.jpeg?400 |}}+{{ math104-s21:s:img_0a0c56a64ed8-1.jpeg?400 |}}
     * __U(f) and L(f)__: Define U(f)=infPU(P,f)U(f) = \inf_{P} U(P,f) and L(f)=supPL(P,f)L(f)= \sup_{P} L(P,f).     * __U(f) and L(f)__: Define U(f)=infPU(P,f)U(f) = \inf_{P} U(P,f) and L(f)=supPL(P,f)L(f)= \sup_{P} L(P,f).
       * Since ff is bounded, hence m,MR\exists m,M\isin \Reals such that mf(x)Mm\leq f(x)\leq M for all x[a,b]x\isin [a,b], then P\forall P partition of [a,b][a,b], U(P,f)i=1nΔxiM=M(ba)U(P,f) \leq \sum_{i=1}^{n} \Delta x_i M = M(b-a), and L(P,f)m(ba)L(P,f) \geq m(b-a), and m(ba)L(P,f)leqU(P,f)M(ba)m(b-a)\leq L(P,f) leq U(P,f) \leq M(b-a).       * Since ff is bounded, hence m,MR\exists m,M\isin \Reals such that mf(x)Mm\leq f(x)\leq M for all x[a,b]x\isin [a,b], then P\forall P partition of [a,b][a,b], U(P,f)i=1nΔxiM=M(ba)U(P,f) \leq \sum_{i=1}^{n} \Delta x_i M = M(b-a), and L(P,f)m(ba)L(P,f) \geq m(b-a), and m(ba)L(P,f)leqU(P,f)M(ba)m(b-a)\leq L(P,f) leq U(P,f) \leq M(b-a).
Line 535: Line 536:
     *__Rudin 7.16__: Let α\alpha be monotone increasing on [a,b][a,b]. Suppose fnR(α)f_n\isin\mathscr{R}(\alpha), and fnff_n\to f uniformly on [a,b][a,b]. Then ff is integrable and abfdα=limnabfndα\int_{a}^{b} fd\alpha = \lim_{n\to\infty} \int_{a}^{b} f_n d\alpha.     *__Rudin 7.16__: Let α\alpha be monotone increasing on [a,b][a,b]. Suppose fnR(α)f_n\isin\mathscr{R}(\alpha), and fnff_n\to f uniformly on [a,b][a,b]. Then ff is integrable and abfdα=limnabfndα\int_{a}^{b} fd\alpha = \lim_{n\to\infty} \int_{a}^{b} f_n d\alpha.
     *__Corollary__: Suppose fnR(α)f_n\isin\mathscr{R}(\alpha) and F(x)=n=1fn(x)F(x) = \sum_{n=1}^{\infty} f_n(x), the series converges uniformly, then FR(α)F\isin\mathscr{R}(\alpha) and abF(x)dα=n=1abfn(x)dα\int_{a}^{b} F(x)d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)d\alpha.     *__Corollary__: Suppose fnR(α)f_n\isin\mathscr{R}(\alpha) and F(x)=n=1fn(x)F(x) = \sum_{n=1}^{\infty} f_n(x), the series converges uniformly, then FR(α)F\isin\mathscr{R}(\alpha) and abF(x)dα=n=1abfn(x)dα\int_{a}^{b} F(x)d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)d\alpha.
-    *__Theorem__: Suppose $\{ f_N \}isasequenceofdifferentiablefunctionson is a sequence of differentiable functions on [a,b]suchthat such that f_n'(x)convergesuniformlyto converges uniformly to g(x)and and \exists x_o\isin [a,b]suchthat such that \{f_n(x_o)\}converges.Then converges. Then f_n(x)convergestosomefunction converges to some function funiformlyand uniformly and f'(x)=g(x)=\lim_{n\to\infty} f_n'(x)$.+    *__Theorem__: Suppose $\{ f_n \}isasequenceofdifferentiablefunctionson is a sequence of differentiable functions on [a,b]suchthat such that f_n'(x)convergesuniformlyto converges uniformly to g(x)and and \exists x_o\isin [a,b]suchthat such that \{f_n(x_o)\}converges.Then converges. Then f_n(x)convergestosomefunction converges to some function funiformlyand uniformly and f'(x)=g(x)=\lim_{n\to\infty} f_n'(x)$.
  
 ==== Questions ==== ==== Questions ====
-  - {{:math104:s:img_769dec51bb88-1.jpeg?400|}} I understand the visualization of this recursive sequence, but how to prove it converges to 5\sqrt{5}? +  - {{math104-s21:s:img_769dec51bb88-1.jpeg?400|}} I understand the visualization of this recursive sequence, but  to 5\sqrt{5}? 
-  - In general, how to prove a set is infinite (in order to use theorem 11.2 in Ross)? +  - In general, how to prove a set is infinite(in order to use theorem 11.2 in Ross)? 
-  - Is there a way/analogy to understand/visualize the closure of a set? The definition is quite vague. +  - Is there a way/analogy to understand/visualize the closure of a set? 
-  - When should we use strong induction instead of regular induction? Will we get different results after using strong induction instead of induction+  - Is there a way to actually test if a set is compact or not instead of merely finding finite subcovers for all open covers? 
-  - Is there a way to actually test if a set is compact or not instead of merely coming up with some open covers where the set is not finitely covered+  - Rudin 4.6 states that if pEp\isin Ea limit point, and ff is continuous at pp if and only if limxpf(x)=f(p)\lim_{x\to p} f(x) = f(p). Does this theorem hold for pEp\isin E but not a limit point of EE
-  - Rudin 4.6 states that if pEp\isin E as a limit point of EEthen ff is continuous at pp if and only if limxpf(x)=f(p)\lim_{x\to p} f(x) = f(p). Does this theorem hold for pEp\isin E but pp is not a limit point of EE+  - {{math104-s21:s:img_0324.jpg?400|}} How is the claim at the bottom proved? 
-  - {{:math104:s:img_0324.jpg?400|}} How is the claim at the bottom proved? +  - Could we regard the global maximum as the maximum of all local minimums?
-  - Could we regard global maxima as the maximum of all local maximums?+
   - Under what circumstance would Taylor Theorem be essential to our proof, since for the question appeared in HW11 Q2, I really do not think using Taylor Theorem is a better way to prove the claim?   - Under what circumstance would Taylor Theorem be essential to our proof, since for the question appeared in HW11 Q2, I really do not think using Taylor Theorem is a better way to prove the claim?
-  - In order for a Taylor series to converge (ncnzn\sum_{n} c_n z^n), z<R\lvert z \rvert < R where RR is the radium of convergence. But if z=R\lvert z \rvert = R, how can we determine whether the series is convergent or divergent+  - In order for a Taylor series to converge (ncnzn\sum_{n} c_n z^n), z<R\lvert z \rvert < R where RR is the radium of convergence. But if z=R\lvert z \rvert = R, how can we tell
-  - If we are claiming ff is continuous on $[a,b]$, how can we prove that ff is continuous at the endpoints, i.e. do we just extend our interval to the left side of aa and right side of bb to do so? +  - If we are claiming ff is continuous on [a,b][a,b], , i.e. do we just extend our interval to the left side of aa and right side of bb to do so? 
-  - What information could we extract from the line "ff has a bounded first derivative (i.e. fM\lvert f' \rvert \leq M for some $M>0$)"? +  - What information can we extract from the line "ff has a bounded first derivative (i.e. fM\lvert f' \rvert \leq M for some $M>0$)"? 
-  - How do we prove a set is sequentially compact without proving that it is compact? (Starting from its definition seems too complicated to take into account all sequences in the set) +  - How sequentially compact without proving that it is compact? (Starting from ms too complicated to take into account all sequences in the set) 
-  - +  - If an+1=cos(an)a_{n+1} = \cos (a_n) and choose a1a_1 such that 0<a1<10 < a_1 < 1, is ana_n a ? 
 +  - Does uniform convergence on a sequence of functions {fn}\{f_n\} in FF to ff imply ?  
 +  - If fn\sum f_n converges uniformly, does it imply fnf_n satisfies Weiestrass M-test? 
 +  - For the alternating series test, if instead of sequence of numbers we have sequence of functions and those functions {fn}\{ f_n \} satisfies f1f2f3...f_1 \geq f_2 \geq f_3 ... and fn0f_n \geq 0 for all xXx\isin X, limfn=0\lim f_n = 0, does that mean n(1)nfn\sum_{n} (-1)^n f_n converges uniformly? 
 +  - What is measure zero? (Related to Lebesgue measure and volume of open balls) 
 +  - Is there any covering for a compact set that satisfies total length of the finite subcovers for the set is less than ba\lvert b-a \rvert? (Answer is no) 
 +  - Question 16 on Prof Fan's practice exam. 
 +  - This is my solutions towards the practice exam: {{ math104-s21:s:practice_solutions.pdf |}}
math104-s21/s/martinzhai.1620291078.txt.gz · Last modified: 2021/05/06 01:51 by 66.154.105.2