Due next Thursday, 10/7, 6pm
1. Ross Ex 14.1 (briefly describe your reasoning)
2. Ross Ex 14.4
3. Let $\sum_{n=1}^\infty a_n$ be a series. Show that if $\sum_{m=1}^\infty a_{2m}$ and $\sum_{m=1}^\infty a_{2m-1}$ both converges, then $\sum_{n=1}^\infty a_n$ converges.
4. Show that if a series $\sum_n a_n$ converges absolutely, then $\sum_n a_n a_{n+1}$ converges absolutely.
5. Give an example of divergent series $\sum_n a_n$ of positive numbers $a_n$, such that $\lim_n a_{n+1} / a_n = \lim_n a_n^{1/n} = 1$. And give an example of convergent series $\sum_n b_n$ of positive numbers $b_n$, such that $\lim_n b_{n+1} / b_n = \lim_n b_n^{1/n} = 1$.
1. Ross 14.1. Determine which of the series converges and explain.
2. Ross 14.4
3. Problem: Let $\sum_{n=1}^\infty a_n$ be a series. Show that if $\sum_{m=1}^\infty a_{2m}$ and $\sum_{m=1}^\infty a_{2m-1}$ both converges, then $\sum_{n=1}^\infty a_n$ converges.
Solution: Let $b_n = a_{2n}$ and $c_n = a_{2n-1}$, for $n=1,2,\cdots$. Let $B_N = \sum_{n=1}^N b_n$ and $C_N = \sum_{n=1}^N c_n$, and $A_N = \sum_{n=1}^N a_n$. Then $A_{2N} = B_N + C_N$, and $A_{2N+1} = B_N+C_{N+1}$. Let $B = \lim B_N, C= \lim C_N$. Hence $\lim A_{2N}$ and $\lim A_{2N+1}$ both exists and equals $B+C$, thus $\lim A_N$ exists and equals $B+C$.
4. Since $\sum_n a_n$ converges, $\lim a_n = 0$, hence $a_n$ is bounded, say $|a_n|<L$ for some $L >0$. Then $\sum_{n} |a_n a_{n+1}| \leq L \sum_n |a_n| < \infty$, hence converges absolutely.
5. divergent example $\sum_n 1/n$; convergent example, $\sum_n 1/n^2$.