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Abstract. We numerically investigate the superconvergence property of the discontin-
uous Galerkin method by patch reconstruction. The convergence rate 2m + 1 can be
observed at the grid points and barycenters in one dimensional case with uniform parti-
tions. The convergence rate m + 2 is achieved at the center of the element face in two
and three dimensions. The meshes are uniformly partitioned into triangles/tetrahedrons
or squares/hexahedrons. We also demonstrate the details of the implementation of the
proposed method. The numerical results for all three dimensional cases are presented to
illustrate the proposition.
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1. Introduction

The discontinuous Galerkin method by patch reconstruction(PRDG) was firstly in-
troduced in [12] by Li et al. to solve elliptic equations. The method has been successfully
applied into the biharmonic problem [11], the Stokes problem [13, 14], the eigenvalue prob-
lem [15], the linear elasticity problem [16], the convection-diffusion problem [18] and the
sequential least square method [17]. This method’s original idea is motivated by the patch
reconstruction technique in the finite volume scheme for the hydrodynamic solver [19].
Benefiting from the least square patch reconstruction, a novel piecewise polynomial dis-
continuous finite element space is constructed. The space is a subspace of the general
discontinuous Galerkin(DG) space, which enables the method to enjoy the well-developed
theories and schemes for the DG method. The propose of this article is to introduce the
implementation and investigate the superconvergence property numerically of the PRDG
method.

Superconvergence properties of the finite element method are classical topics which
have been well studied by many [10, 3, 20]. The properties can be employed to design the
a posterior estimator for h-refinement [1] and the post-processing strategies [24]. In the
last decades, there are numerous works focusing on the superconvergence behavior of the
DG method [6, 9, 8, 23, 4]. In particular, Cockburn et al. [7] studied the superconvergence
of the LDG method for elliptic equations on the Cartesian grid. Castillo analyzed the
superconvergence properties for the DG method with conservative numerical flux in [5].
The weak Galerkin(WG) method was introduced by Wang and Ye in [21], and also ob-
served a superconvergence properties numerically. In [22], Wang et al. analyzed the
superconvergence for the polynomial preserving recovered gradient of the WG method.
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In this article, we perform a numerical study of the superconvergence of the PRDG
method and present the detailed algorithms. The PRDG method only takes one degree
of freedom (DOF) per element and achieves arbitrary order with an identical number of
unknowns. The method utilizes the DOFs with very high efficiency. In some particular
cases, the method even can attain higher accuracy than FEMs with the same quantity
of unknowns. The superconvergence property of the PRDG method is also conducive to
efficiency, which means the method can attain a desirable digit precision with only a few
DOFs. The other advantage of the PRDG method is that it has great flexibility in mesh
generation, especially that the polygonal mesh is allowed. However, we only consider the
uniform meshes in this paper for the purpose of superconvergence.

The article is organized as follows. The approximation space and the details of
the algorithm are introduced in Section 2. We first describe the principle to choose the
element patches and the sampling nodes, and then elaborate the process to calculate
the global stiff-matrix. Section 3 states the approximation properties of such space and
the superconvergence properties of the proposed method. Numerical experiments are
presented in Section 4 to demonstrate the properties of the resulting linear system and to
verify the theoretical results in all 3 dimensions.

2. Numerical Implementation of the Discontinuous Galerkin Method by
Patch Reconstruction

We consider an open bounded Lipschitz domain Ω in RD,D = 1, 2, 3, such as a convex
polygonal domain in RD. Let Th be a uniform partition of domain Ω. Let hK and |K|
denote its diameter and area/volume, respectively. With the uniform partition, h: = hK .
The arbitrary polygonal/polyhedron mesh is allowed in this method. However, we focus
our discussion on uniform meshes for the purpose of the superconvergence investigation.
The shape regularity constraints will be claimed in the next section, and we just focus on
the numerical implementation here.

2.1. Reconstruction and Interpolation. With qualified partitions Th, we expect to
define a finite element space Vh and an interpolation operator R on the mesh at a rea-
sonable cost. If the high order polynomial approximation is needed, a common approach
is to define the numerous DOFs locally on each element. To avoid abusing the DOFs, we
define only one DOF per element. It is denoted with xK for the sampling node. Let Uh

be the piecewise constant space associated with Th, i.e.,

Uh: = { v ∈ L2(Ω) | v|K ∈ P0(K)}.
Now we construct the finite element space Vh by the space Uh. More precisely, the finite
element space with piecewise polynomials Vh can be regarded as the Uh embedded by the
reconstruction operator R, which can be expressed as follows,

Vh := R(Uh).

Since there is only one DOF per element and it requires more DOFs to construct
higher order polynomial, the patch reconstruction technique is used. The high order
polynomial is constructed from the element patch S(K). S(K) is a subset of Th that
includes K itself and the other elements around K. The sampling node xK is assigned
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for each element K, which is a point located inside the element. The details of how to
set up the sampling nodes and the element patch will be discussed later. IK denotes the
set of sampling nodes corresponding to S(K). Let #IK denote the number of elements
belonging to IK , and #S(K) denotes the number of elements belonging to S(K).

Now we introduce how to obtain the local approximation polynomial with the sam-
pling nodes and the element patch. For ∀v ∈ Uh and ∀K ∈ Th, a local polynomial RKv
of degree m can be found by seeking the best discrete local least-squares approximation.

(2.1) RKv = arg min
p∈Pm(S(K))

∑
x∈IK

|v(x)− p(x)|2 .

RKv gives an interpolation polynomial on the patch S(K). We limit the interpolation on
element K. The global interpolation operator R is given by

(Rv)|K := (RKv)|K , ∀K ∈ Th.

Above is the general process to construct the finite element space Vh, and some points
should be clarified here. Firstly, the barycenter of element K is preferred as the sampling
node xK when we investigate the superconvergence of the PRDG method, although it can
be chosen inside K. Then, we discuss how to determine the element patch S(K). The
number #S(K) should be larger than the DOFs that the polynomial of degree m needs.
The number is

m+ 1(D = 1),
m2 + 3m+ 2

2
(D = 2),

3m2 + 3m+ 2

2
(D = 3),

where D is the dimension of space. A threshold value c0 is assigned to #S(K), which is
reached S(K) recursively by adding the nearest Von Neumann neighbors. The recursive
process is terminated when the size of S(K) meets the requirement. Figure 2.1 demon-
strate the appropriate patch with proper regularity and the inappropriate patch with an
isolated element. The regularity of the element patch might influence the approximation
convergence result. This illustrates the reason why we use the above principle to choose
the element patch.

The least square problem (2.1) can be easily solved by the generalized inverse of
matrix M = (ATA)−1AT , where A is the Vandermonde-type matrix. The details of 1D
examples can be found in [11], 2D in [13] and 3D in [15]. The matrix MK stores the
information of the basis functions whose value is not zero in element K. The matrix MK

only depends on the sampling nodes set IK and it is irrelevant to the vector v ∈ Uh.
MK is calculated offline and stored in memory, which is distinct from the FEM and DG
methods. The basis function λK is the characteristic function corresponding to K. And
the basis functions are not explicitly used in the calculation. The interpolation polynomial
with order m of the vector v ∈ Uh is specified as

(2.2) RKv = LMKvIK .

where L is the basis vector of a polynomial with order m. L = [1, x, x2, ..., xm] for 1D,
L = [1, x, y, x2, xy, y2, ..., ym] for 2D, and L = [1, x, y, z, x2, xy, y2, xz, yz, z2, ..., zm] for 3D,
respectively.
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Figure 2.1. The uniform triangle mesh and the appropriate patch(left)/ the
inappropriate patch(right).

2.2. Computation of the stiffness matrix]. We consider the following Poisson prob-
lem and solve it with the PRDG method,

−4u = f in Ω, u = 0 on ∂Ω.

Let Eh denote the collection of all edges of Th, E0
h denote the collection of all the

interior edges and Ebh denote the collection of all boundary edges. The variational form of
the Poisson problem is to seek uh ∈ Uh such that

(2.3) ah(Ruh,Rvh) = (f,Rvh)h for all vh ∈ Uh.

The IPDG scheme [2] can be directly applied, where the bilinear term ah and linear
operator (f,Rvh)h are defined for any vh, wh ∈ Uh as

ah(Rvh,Rwh): =
∑
K∈Th

∫
K

∇Rvh · ∇Rwhdx

−
∑
e∈Eh

∫
e

([[∇Rvh]] {Rwh }+ [[∇Rwh]] {Rvh }) ds

+
∑
e∈Eh

∫
e

η

he
[[Rvh]] · [[Rwh]]ds,

(2.4)

and

(2.5) (f,Rvh)h: =
∑
K∈Th

∫
K

fRvhdx,

where η is a positive constant. The average { v } and the jump operator [[v]] is defined as
follows. Assume e is a common edge shared by elements K1 and K2, and let n1 and n2
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be the outward unit normal at e of K1 and K2, respectively. Given vi: = v|∂Ki
, we define

{ v } =
1

2
(v1 + v2), [[v]] = v1n1 + v2n2, on e ∈ E0

h.

For a vector-valued function ϕ, we define ϕ1 and ϕ2 similarly,

{ϕ } =
1

2
(ϕ1 + ϕ2), [[ϕ]] = ϕ1 · n1 + ϕ2 · n2, on e ∈ E0

h.

For e ∈ Ebh, let

[[v]] = vn, {ϕ } = ϕ.

The linear algebra system is obtained from the weak form (2.3),

(2.6) Auh = F,

where A is the global stiff matrix whose size is N ×N , uh ∈ Uh is a N × 1 vector, and F
is the right hand side(RHS) which also is a N × 1 vector. N is the number of elements in
Th.

We now illuminate the computation of the right hand side F . The i−th component
of F is the numerical integration of the inner product between f and λKi

, where λKi
is

the basis function corresponding to the element Ki, i.e.

Fi =

∫
Ki

fλKi
dx,

As we mentioned, the basis function λKi
is not explicitly used in the computation. We

calculate the local right hand side ψKi
element by element, then assemble the local RHS

ψKi
to the global RHS F .

ψKi
=

∫
Ki

fLMKi
dx.

The corresponding relation between ψKi
and F is determined by sKi

.
Similarly, the elements in the global stiff matrix A is computed from ah(λKi

, λKj
). It

is not explicitly calculated. Instead, the local element stiff matrix κKi
and local trace stiff

matrix κe are calculated per element in Th and per edge in Eh, respectively. Assembling
the locate stiff matrixes gives A.

The size of the local element stiff matrix is #S(Ki)×#S(Ki), and κKi
is computed

as follows

κKi
=

∫
Ki

(∇xLMKi
)T (∇xLMKi

) + (∇yLMKi
)T (∇yLMKi

) + (∇zLMKi
)T (∇zLMKi

) dx.

where ∇xL is the gradient operator on L, ∇xL = [0, 1, 0, 0, 2x, y, 0, z, 0, 0, ...,mxm−1]. The
vector ∇yL and ∇zL are given in the same way. Because the MKi

is calculated offline, the
Jacobian matrix and the affine transformation are no longer needed. Numerical integra-
tion is conducted on the real element Ki instead of the reference element. Furthermore,
the corresponding matrix is constituted by sTKi

sKi
.

Consider an interior edge e ∈ E0
h, which is shared by elements Ki and Kj. The local

trace stiff matrix κe is calculated on edge e which is relevant with two element patchs
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S(Ki) and S(Kj), and its size is (#S(Ki) + #S(Kj)) × (#S(Ki) + #S(Kj)). But in
practice, the matrix κe is decomposed to four submatrix κe1 ,κe2 ,κe3 ,κe4 for simplicity,

κe =

[
κe1 κe2
κe3 κe4 .

]
The sizes of four submartrices are #S(Ki) × #S(Ki) , #S(Ki) × #S(Kj) , #S(Kj) ×
#S(Ki) and #S(Kj) ×#S(Kj), respectively. Numerical integration of κe1 is calculated
by

κe1 =− 1

2

∫
e

(∇xLMKi
nxi

+∇yLMKi
nyi +∇zLMKi

nzi)
T (LMKi

) ds

− 1

2

∫
e

(LMKi
)T (∇xLMKi

nxi
+∇yLMKi

nyi +∇zLMKi
nzi) ds

+
η

he

∫
e

(LMKi
)T (LMKi

) ds,

where ni = (nxi
, nyi , nzi) is the unit outer norm of Ki on e. The other submatrix and the

corresponding relation are computed analogously.
We end this section by some comments about the linear system (2.3). The number

of unknowns in uh always equals to the number of elements N . The scale of stiff matrix
A always maintains N×N regardless of the approximation order m which may vary. The
sparsity pattern of A may vary when the size of element patch S(K) varies.

3. Superconvergence Results in Elliptic Problems

In this section, we discuss the convergence property of the PRDG method for the
elliptic problems. The mesh partition Th is uniformly split in all dimensions in this paper.
So it satisfies the shape regularity conditions naturally [12]. For the element patch S(K),
we define dK := diamS(K) and d = maxK∈Th dK . Moreover, we assume the following.
Assumption 1 For ∀K ∈ Th, there exist constants C and c that are independent of K,
such that Bc ⊂ S(K) ⊂ BC with C ≥ 2c, and S(K) is star-shaped with respect to Bc,
where Bc is a disk with radius c.

The Assumption 1 is the geometric constraint for the element patch, which is also
the reason why we must obey the principle to choose the candidate of element patch.
Next, we claim the assumption on the sampling node set.
Assumption 2 For any K ∈ Th and p ∈ Pm(S(K)),

(3.1) p|I(K) = 0 implies p|S(K) ≡ 0.

This assumption leads to the uniqueness of the least squares problem (2.1), which
implies that the number #IK must be larger enough. However, the size of the element
patch is a subtle issue. When the element patch is taking too large, the diameter d of
S(K) increases and might change the numerical error. There is a quantitative estimate
of this assumption,

Λ(m, I(K)) <∞
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with

(3.2) Λ(m, I(K)): = max
p∈Pm(S(K))

‖ p ‖L∞(S(K))

‖ p|I(K) ‖`∞
.

The constant Λ(m, I(K)) is analogous to the Lebesgue constant in the approximation
theory. The uniform upper bound of Λ(m, I(K)) can be found if the element patch
satisfies some constraints, we refer to [12] for the details. Now, we are ready to state the
approximation property of the local reconstruction operator,

Lemma 3.1. [12, Lemma 3] There exists a unique solution to (2.1) while Assumption 2
holds. Furthermore, RKv satisfies

(3.3) RKg = g for all g ∈ Pm(S(K)).

For any K ∈ Th and g ∈ C0(S(K)), the stability property holds

(3.4) ‖RKg ‖L∞(K) ≤ Λ(m, I(K))
√

#I(K)‖ g|I(K) ‖`∞ ,
and the quasi-optimal approximation property is valid

(3.5) ‖ g −RKg ‖L∞(K) ≤ Λm inf
p∈Pm(S(K))

‖ g − p ‖L∞(S(K)),

where Λm: = maxK∈Th{1 + Λ(m, I(K))
√

#I(K)}.
The nearly optimal approximation property naturally exists.

Lemma 3.2. [12, Lemma 4] If Assumption 2 holds, then there exists C that for u ∈
C0(Ω) ∪Hm+1(Ω) such that

‖ g −RKg ‖L2(K) ≤ CΛmhKd
m
K | g |Hm+1(S(K)) .(3.6)

‖∇(g −RKg) ‖L2(K) ≤ C (hmK + Λmd
m
K) | g |Hm+1(S(K)) .(3.7)

The approximation estimates of the global reconstruction operator are as follows,

Lemma 3.3. [12, Equation (3.4)] For u ∈ Hm+1(Ω), together with the Agmon inequality
and the local approximation estimates (3.6) and (3.7), there exist a positive constant C,
such that

‖ g −Rg ‖L2(Ω) ≤ CΛmhd
m | g |Hm+1(Ω) .(3.8)

‖∇(g −Rg) ‖L2(Ω) ≤ C (hm + Λmd
m) | g |Hm+1(Ω) .(3.9)

3.1. General Convergence Property. We now introduce the convergence property of
the PRDG method for the elliptic problems. The coercivity and the boundedness of ah
are obvious. For sufficiently large η, there exist α and β such that

ah(Rv,Rv) ≥ α‖|Rv ‖|2, v ∈ Uh,

|ah(Rv,Rw)| ≤ β‖|Rv ‖|‖|Rw ‖|, v, w ∈ Uh and v, w ∈ H1(Th).

where the energy norm is defined as

‖| v ‖|2 =
∑
K∈Th

‖∇v ‖2
L2(K) +

∑
e∈Eh

|he|−1 ‖ [[v]] ‖2
L2(e).

This immediately gives the existence and the uniqueness of the weak form (2.3). The
error estimate for the Poisson problem is given by the following theorem.
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Theorem 3.4. [12, Theorem 1] For u ∈ Hm+1(Ω) and let uh be the solution of the Poisson
problem and (2.3), respectively. Then there exists a positive constant C, such that

(3.10) ‖u−Ruh ‖L2(Ω) ≤ C
(
hm+1 + Λmd

m+1
)
|u |Hm+1(Ω)

If Assumption 1 holds, then we can simplify(3.10) into

(3.11) ‖u−Ruh ‖L2(Ω) ≤ Chm+1 |u |Hm+1(Ω) .

The above estimates are for the general meshes. If we employ uniform meshes, we
can obtain a better convergence rate at the barycenters or the face centers of the mesh.

3.2. Superconvergence Property. In one dimensional space, the meshes are equally
distributed. Then refine the mesh by split one grid into two identical grid, which guaran-
tees each grid points in the coarse mesh will also be the grid points in the fine mesh, see
Figure 3.1.

Figure 3.1. The way to refine the mesh.

A convergence rate 2(m+1) can be observed at some special point. In one dimensional
case, the grid points and the barycenters of the grid have the superconvergence property.
We define two norms for the estimates, which are related to the discrete point values.
There areN grid points on the uniform partition Th, which are the barycenters of elements,
denoted by x1, ...., xN . We define the norm ‖ · ‖h that depends on the mesh as follows,

‖uh ‖h :=
N∑
i=1

1

N
|uh(xi)|.

Since there are two values on the grid points and the discontinuity, we actually investigate
the average { · } at the grid points. Assume there are M grid points on the uniform
partition Th, denote with x1, ...., xM , norm ‖| · ‖|h is defined as follows,

‖|uh ‖|h :=
M∑
i=1

1

M
| {uh(xi) } |.

For one dimensional case, we have the following superconvergence result.

Proposition 3.1. If the partition Th are equally divided, u and uh are the solution in
Theorem 3.4, and additionally u ∈ H2m+1(Ω), such that the superconvergence property
with 2m+ 1 order at the grid points and the barycenters are satisfied, i.e.

‖u−Ruh ‖h ≤ Ch2m+1 |u |H2m+1(Ω) ,

‖|u−Ruh ‖|h ≤ Ch2m+1 |u |H2m+1(Ω)

(3.12)

We consider two types of uniform partition in two dimensional space. There are
uniform triangle mesh and uniform square mesh. Those meshes are demonstrated in Fig-
ure 2.1 and Figure 3.2, respectively. The special points which have the superconvergence
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property are the barycenters of each element. However, we also observe the superconver-
gence phenomenon at the center of the element face in uniform square mesh, while the
convergence order is m+ 2.

Figure 3.2. Uniform square mesh.

Proposition 3.2. If the partition Th are uniform distributed in two dimensional space,
u and uh are the solution in Theorem 3.4, and additionally u ∈ Hm+2(Ω), such that
the superconvergence property with m + 2 order at the barycenters of each elements are
satisfied, i.e.

(3.13) ‖u−Ruh ‖h ≤ Chm+2 |u |Hm+2(Ω) .

Meanwhile, if the partition Th is uniform square mesh, the superconvergence also can be
observed at center of element faces.

(3.14) ‖|u−Ruh ‖|h ≤ Chm+2 |u |Hm+2(Ω) .

The superconvergence results in three dimensional space do not coincide with the
situation in two dimensional. We can not observe the superconvergence property at
the barycenters of elements. The domain Ω is partitioned into uniform tetrahedron or
hexahedron meshes which are shown in Figure3.3. The superconvergence property with
m+ 2 order can be observed at the centers of each face of the elements.

Proposition 3.3. If the partition Th are uniformly distributed in three dimensional space,
u and uh are the solution in Theorem 3.4, and additionally u ∈ Hm+2(Ω), such that the
superconvergence property with m+ 2 order at the center of each face of the elements are
satisfied, i.e.

(3.15) ‖|u−Ruh ‖|h ≤ Chm+2 |u |Hm+2(Ω) .

4. Numerical Experiments

In this section, we present numerical results for the superconvergence property of
the PRDG method. All the meshes are uniformly distributed as was presented. We first
demonstrate the relation between the sparsity pattern of the resulting linear system and
the size of the element patch. We employ the uniform tetrahedron mesh to partition the
cubic domain with 3072 elements. The linear reconstruction is conducted with the patch
size 7 and 16, and the quadratic reconstruction is conducted with the patch size being 16.
Figure 4.1 shows the three sparsity patterns with different reconstruction and patch size.
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Figure 3.3. The uniform tetrahedron mesh (left)/ and the hexahedron mesh(right).
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Figure 4.1. The sparsity patterns of the linear systems: The linear re-
construction with 7 patch size(left)/The linear reconstruction with 16 patch
size(middle)/The quadratic reconstruction with 16 patch size(right)

Firstly, we can observe that the size of all the linear system is 3072× 3072 , regard-
less of the reconstruction. Then compare the left two subfigures, which are the linear
reconstruction with different patch sizes. The sparsity pattern changes when the element
patch and the number of nonzero elements increases. However, the right two subfigures
demonstrate the linear reconstruction and the quadratic reconstruction with the same
patch size. The sparsity patterns and the number of nonzero terms coincide with each
other. Generally, the sparsity of the resulting linear system is mainly determined by the
size of the element patch, and when the reconstruction order increases, the larger element
patch is demanded, which will lead the sparsity to get slightly worse. In the numerical
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Figure 4.2. The convergence order of ‖u − Ruh‖L2(Ω)(left)/‖u −
Ruh ‖h(middle)/‖|u−Ruh ‖|h(right) with different order m in 1D.

m ‖u−Ruh ‖L2(Ω) error order ‖u−Ruh ‖h error order ‖|u−Ruh ‖|h error order
1 1.9603 2.9605 3.0536
2 3.2727 5.0225 5.0127
3 4.2114 6.8449 6.8847

Table 4.1. The convergence order of the different norms in 1D.

m ‖u−Ruh ‖L2(Ω) error order ‖u−Ruh ‖h error order
1 1.9841 3.1221
2 3.3599 4.2205
3 4.0463 4.9108
4 5.2886 5.8989

Table 4.2. The convergence rate of different norms in 2D triangle mesh.

experiments, we usually take the element patch sightly larger than the DOFs of high order
polynomial reconstruction needs.

4.1. One dimensional results. In one dimensional occasion, the exact solution is taken
as u(x) = sin(2πx), the corresponding right hand side is f = 4π2 sin(2πx) and the Dirichlet
boundary condition u(0) = u(1) = 0 is weakly satisfied.

In Figure 4.2 and Table 4.1, we present the convergence rate for this Poisson equation
which is solved by the PRDG method with different norms. At the mesh points and the
barycenters of the grids, we obtain 2m + 1th order convergence rate while the L2 norm
error is m+ 1. The results agree with the Proposition 3.1.

4.2. Two dimensional results. We consider the Poisson equation with the Dirichlet
boundary in the square domain. The exact solution is u(x) = sin(2πx) sin(2πy), and the
superconvergence property is slightly different with the one dimensional case. Figure 4.3
and Table 4.2 shows the numerical results in uniform triangle meshes. The supercon-
vergence appears at the barycenters of each element with m + 2 order. However, the
convergence rate at the centers of each element faces is consistent with the L2 norm error.
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Figure 4.3. The convergence order of ‖u−Ruh‖L2(Ω)(left)/‖u−Ruh ‖h(right)
with different order m in 2D triangle mesh.
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Figure 4.4. The convergence order of ‖u − Ruh‖L2(Ω)(left)/‖u −
Ruh ‖h(middle))/‖|u − Ruh ‖|h(right) with different order m in in 2d square
mesh.

m ‖u−Ruh ‖L2(Ω) error order ‖u−Ruh ‖h error order ‖|u−Ruh ‖|h error order
1 2.1375 2.9830 2.9666
2 3.0613 3.9890 3.9863
3 4.2076 4.8476 4.9693
4 4.9222 6.0021 6.0122

Table 4.3. The convergence rate of different norms in 2D square mesh

Figure 4.4 and Table 4.3 present the square meshes numerical results. The supercon-
vergence property can be achieved at the grid points and the element face centers at the
same time. The convergence rate is m+ 2 which is also coincides with Proposition 3.2.
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Figure 4.5. The convergence order of hexahedron mesh(left)/tetrahedron
mesh(right) of linear reconstruction with different norms in 3D.

Mesh type ‖u−Ruh ‖L2(Ω) error order ‖|u−Ruh ‖|h error order
Tetrahedron 1.9468 3.0814
Hexahedron 2.1064 3.0191

Table 4.4. The convergence order of linear reconstruction with different norms
in 3D mesh

4.3. Three dimensional results. Finally, we present a three dimensional example. The
Poisson equation with exact solution u = sin(2πx) sin(2πy) sin(2πz) is considered. Fig-
ure 4.5 and Table 4.4 shows the linear reconstruction numerical results. The supercon-
vergence only can be achieved at the centers of element faces. The convergence rate is
m+ 2 which is also meet with Proposition 3.3 well.

5. Conclusions

The superconvergence property of the PRDG method for elliptic problems is inves-
tigated numerically. Details of numerical implementations are presented and the sparsity
patterns of resulting linear systems are remonstrated. The superconvergence results are
achieved at the face centers or the barycenters of the element in function values with the
uniform partitions.

Acknowledgment

The research is supported by the National Natural Science Foundation of China
(Grant No. 11671312, 91630313), the Natural Science Foundation of Hubei Province
(Grant No. 2019CFA007), and China Postdoctoral Science Foundation (Grant No. 2019M660558).
The numerical calculations have been done on the supercomputing system in the Super-
computing Center of Wuhan University.



14 Z.-X. LIU, Z.-Y. SUN, AND J. Z. YANG

References

[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Pure and
Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000.

[2] D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J.
Numer. Anal., 19(4):742–760, 1982.

[3] M. Bakker. One-dimensional Galerkin methods and superconvergence at interior nodal points. SIAM
J. Numer. Anal., 21(1):101–110, 1984.

[4] W. Cao, C.-W. Shu, Y. Yang, and Z. Zhang. Superconvergence of discontinuous Galerkin methods
for two-dimensional hyperbolic equations. SIAM J. Numer. Anal., 53(4):1651–1671, 2015.

[5] P. Castillo. A superconvergence result for discontinuous Galerkin methods applied to elliptic prob-
lems. Comput. Methods Appl. Mech. Engrg., 192(41-42):4675–4685, Castillo.

[6] B. Cockburn, J. Guzmán, and H. Wang. Superconvergent discontinuous Galerkin methods for second-
order elliptic problems. Math. Comp., 78(265):1–24, 2009.

[7] B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau. Superconvergence of the local discontinuous
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