# Math 1A Final Review



# Yosen Lin

yosenL@ocf.berkeley.edu December 4, 2001 8-10pm Unit 3

## **Suggested Study Strategy and Schedule**

#### The 20 hr plan:

*The 20-hour plan is actually a substantial amount of studying. It is equivalent to about 3 full days of studying, or about 5 nights.* 

| juit duijs of sindjuig, of dooth of inginist        |       |  |
|-----------------------------------------------------|-------|--|
| Торіс                                               | Hours |  |
| Fundamentals review                                 | 2     |  |
| Skim textbook (work examples and theorems)          | 3     |  |
| Intermediate problems review                        | 4     |  |
| Quiz and midterm review (redo quizzes and midterms) | 2     |  |
| Theorems review (special cases)                     | 2     |  |
| Theorem proofs                                      | 1     |  |
| Challenge problems                                  | 4     |  |

#### The 10 hr plan:

Most students will elect to choose this one, especially students who have other finals to study for.

| Topic                                               | Hours |  |
|-----------------------------------------------------|-------|--|
| Fundamentals review                                 | 1     |  |
| Skim textbook (work examples and theorems)          | 2     |  |
| Intermediate problems review                        | 3     |  |
| Quiz and midterm review (redo quizzes and midterms) | 2     |  |
| Theorems review and proofs (special cases)          | 1     |  |
| Challenge problems                                  | 1     |  |

#### The panic plan:

It's the night before, and you haven't startedNo suggested times are given here. Take the amount of time you have, and allocate accordingly. It is unlikely that rereading the book will help you now, so it is suggested that you simply do as many problems as you can...

| Торіс                                               | Hours |  |
|-----------------------------------------------------|-------|--|
| Fundamentals review                                 | 25%   |  |
| Theorems review                                     | 10%   |  |
| Intermediate problems review                        | 35%   |  |
| Quiz and midterm review (redo quizzes and midterms) | 30%   |  |

- All problems should be attempted without referring to the material, and without a calculator. In other words, try to simulate test conditions.

- In all cases, to review means to do the problems again, not to read about doing the problems. You didn't learn to drive a car by reading the DMV manual, did you?

## **Summary Sheet of Topics for Math 1A**

#### **Functions**

Types of functions Domain and range Transformations: Translation, Scaling, Algebraic combinations Transformations: Function composition Logarithms and exponentials

$$e^{a} = \lim_{n \to \infty} \left( 1 + \frac{a}{n} \right)^{n}$$
, ln a = area under curve of  $f(x) = \frac{1}{x}$  from 1 to a

#### Limits

Informal definition of limit Infinite limits, one sided limits When does a limit exist? Squeeze theorem; other theorems for calculating limits Epsilon-delta proof L'Hopitals Rule  $\lim_{x\to 0} \frac{\sin x}{x} = 1, \text{ and } \lim_{x\to 0} \frac{\cos x - 1}{x} = 0$ 

Continuity

Definition of continuity

#### Derivatives

Definition of derivative; alternative definition of derivative When does a derivative exist? Chain rule Implicit differentiation Linear approximation and differentials Newtonian approximation

#### Word problems

Related rates Optimization Position, velocity, acceleration problems

#### Minimization and maximization

First/second derivative tests Curve sketching Slant asymptotes

#### Integrals

Riemann Sum Antiderivatives Interpretation as area u-substitution

#### Volumes

Disk method Shell method

#### Major theorems of Math 1A

Rolles Theorem Mean Value Theorem Fundamental Theorem of Calculus, Part I Fundamental Theorem of Calculus, Part II

## **Suggested Problems for Review**

| Торіс          | Fundamental          | Intermediate      | Difficult         |
|----------------|----------------------|-------------------|-------------------|
| Functions      | (1.1) 6,22,36,38,53  | (1.1) 60          | (1P+) 12          |
|                | (1.2) 10             | (1.2) 20          |                   |
|                | (1.3) 6,37,46        | (1.3) 63,64       |                   |
| Limits         | (2.2) 4,14           | (2.2) 24          | (2.3) 47          |
|                | (2.4) 16,20          | (2.3) 32,36,58    | (2.4) 37          |
|                | (2.6) 18,24          | (2.4) 27,35,36    | (2P+) 5           |
|                | (4.4) 8,11,34,56     | (2.6) 41,61       | (4.4) 73,77,78,79 |
|                |                      | (4.4) 72          |                   |
| Continuity     | (2.5) 10,16          | (2.5) 39,53       | (2.5) 57,61       |
| Derivative     | (2.8) 2,21           | (2.9) 40,43       | (2.8) 33,34       |
|                | (2.9) 12,22          | (3.1) 61          | (3.1) 58          |
|                | (3.1) 22,28          | (3.2) 32,42       | (3.4) 46          |
|                | (3.2) 5,23           | (3.4) 36,43       | (3.6) 54          |
|                | (3.4) 11,29          | (3.5) 73,77       | (3.7) 63          |
|                | (3.5) 13,21,23,38,55 | (3.6) 21,36,38,63 | (3.8) 51,52       |
|                | (3.6) 6,28           | (3.7) 30          | (P3+) 8,9,25      |
|                | (3.8) 44             | (3.8) 23,36,45    | (4.3) 68,69,73    |
|                | (3.11) 22,40,41      | (P3+) 7           | (4.9) 32          |
|                | (4.9) 16             | (4.9) 27          |                   |
| Word problems  | (3.10) 7,21          | (3.10) 11,14      | (3.10) 32,36      |
|                | (4.7) 4,21,38        | (4.7) 30,31,40    | (4.7) 50,52,54    |
| Min/Max/Curves | (4.1) 39,43,54       | (4.1) 76          | (4.5) 59,60       |
|                | (4.3) 8,17           | (4.3) 26,65       | (P4+) 1,3,13      |
|                | (4.5) 20,42          | (4.5) 32,46       |                   |
| Integrals      | (4.10) 4,19,23,29    | (4.10) 40,72      | (5.1) 24          |
|                | (5.1) 4,17           | (5.1) 18,20       | (5.2) 47,58,62,65 |
|                | (5.2) 5              | (5.2) 17,31,36    | (5.3) 57,60,62    |
|                | (5.3) 7,21,34        | (5.5) 78          | (5.5) 79,81,82    |
|                | (5.4) 26,41          | (5.6) 3,4         |                   |
|                | (5.5) 9,31,53,58,59  | (6.1) 40          |                   |
|                | (6.1) 11             |                   |                   |
| Volume         | (6.2) 12,47          | (6.2) 50          | (6.2) 59,62,69    |
|                | (6.3) 3,16,37        | (6.3) 40          | (6.3) 44          |
| Theorems       | (4.2) 4,5            | (4.2) 17,19,20    | (4.2) 25,29,36    |
|                | (5.3) 12,15          | (5.3) 49,60       | (5.3) 58          |
|                |                      |                   | (P5+) 12,15       |
|                |                      |                   |                   |

Px+ refers to the Problems Plus section from Chapter x.

### **True/False**

- 1. If f(a) = f(b), then a = b
- 2. If f(x) > 0 for all x, then  $\int_{a}^{b} f(x) dx > 0$  for any a and b.
- 3. If f(c) = L, then  $\lim_{x \to c} f(x) = L$
- 4. If f'(x) = g'(x), then f(x) = g(x)
- 5.  $f(x) = \cos x$  is an even function
- 6. f(x) = |x| is continuous for all x
- 7. A rational function can have infinitely many asymptotes
- 8. If  $\lim_{x \to c} f(x) = \infty$  and  $\lim_{x \to c} g(x) = \infty$ , then  $\lim_{x \to c} [f(x) g(x)] = 0$ 9. The slope of  $f(x) = \ln x$  at x = -2 is  $f'(-2) = -\frac{1}{2}$
- 10.  $\int_{-1}^{1} x^{-2} dx = \left[-x^{-1}\right]_{-1}^{1} = (-1) 1 = -2$
- 11. If F'(x) = G'(x) on [a,b], then F(b) F(a) = G(b) = G(a)
- 12. The average value of sin x from 0 to  $2\pi$  is 0
- 13. The derivative of  $f(x) = \ln \pi$  is  $f'(x) = \frac{1}{\pi}$
- 14. For x > 0, if  $f(x) = \ln(ax)$ , a > 0, and  $g(x) = \ln(bx)$ , b > 0, then f'(x) = g'(x)
- 15. The natural log function has an inverse by the horizontal line test

$$16. \ \int \frac{1}{x} dx = \ln |cx|$$

- 17. No even function has an inverse
- 18.  $\frac{d}{dx}\int_{a}^{b}F'(x)dx = F'(b)$
- 19. If  $f(x) = g(x)e^x$ , then the only zeroes of f(x) are the zeroes of g(x).
- 20. If  $\int_{a}^{b} f(x) g(x)dx = A$ , then  $\int_{a}^{b} g(x) f(x)dx = -A$