RNN

Slot Filling

Slot Filling

Trivial Sol.

Example Application

输出一个关于词汇的distribution

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size.	apple = [1					_
Each dimension corresponds	bag	= [0	1	0	0	0]
to a word in the lexicon	cat	= [0	0	1	0	0]
The dimension for the word	dog	= [0	0	0	1	0]
is 1, and others are 0	elephant	= [0	0	0	0	1]

Beyond 1-of-N encoding

Dimension for "Other" Word hashing apple a-a-a 0 bag a-a-b 0 cat 0 а-р-р dog 0 26 X 26 X 26 p-l-e elephant 0 p-p-l "other" 1 w = "apple"w = "Sauron" w = "Gandalf" Created with EverCam.

独热编码

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example

Input sequence: $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$

nple output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Created with Ever

RNN

The same network is used again and again.

Created with Ever

Probability of Probability of "arrive" in each slot "Taipei" in each slot y² y^1 store store a^1 a^1 a^2 X^3 x^2 2nd arrive Taipei on November

Of course it can be deep ...

Elman Network & Jordan Network

Elman: 存hidden layer

Jordan: 存output 结果好点

Bidirectional RNN

训练两个不同方向的RNN 同时产生输出

LSTM

记忆较长的(相较于RNN) short-term

Long Short-term Memory (LSTM)

LSTM - Example

When $x_2 = 1$, add the numbers of x_1 into the memory

When $x_2 = -1$, reset the memory

When $x_3 = 1$, output the number in the memory.

Original Network:

➤ Simply replace the neurons with LSTM

Created with EverCam. http://www.camdemy.com

Created with EverCam.

 X^t 分别乘以不同的权重矩阵,不同的分量控制不同的gate

 c^t 代表存储的状态

Created with EverCam.

Created with **EverCam**. http://www.camdemy.com

