Pointers, Arrays, Memory

Address vs value

voidx* iS a type that can point to anything.
word alignment.

Pointer Arithmetic

char *c;

char **d;

(c+5)-> ¢ + sizeof(char)*5 ->c+5
(d+7)-> d + sizeof(char*)*7 ->d+28

The actual value used by the compiler is the size what
the pointer are pointing to.

Conclusion on Pointers

PO ipfR R AU R ER I, ARG RRESy, mBEE
#ip += 1
[94] nigsiptgm Mt RMEM, E%RT
++wip
1
(#ip) ++

ERIBATER . 1) (Fip) ++ RS SR L FTHRY, G0, iZF KSR ip#E T iz,
iAok ipdR A R TSR, XKW A, LT+ XA iz BIHEIE A £

4L m 8

FEHIES B FF o

 All data is in memory

* Each memory location has an address to use to refer to it and a value stored
in it
- Pointer is a C version (abstraction) of a data address

« * “follows” a pointer to its value
* & gets the address of a value

- Cis an efficient language, but leaves safety to the
programmer
» Variables not automatically initialized
* Use pointers with care: they are a common source of bugs in programs

P i, (9

Struct

It's an instruction to C on how to arrange a bunch of bytes
in a bucket.
Provides enough space and aligns the data with padding.

struct foof{
int a;

char b;

struct foo *c;

}

So the real memory layout will be:
4 bytes for g,

1 byte for b,

3 bytes empty,

4 bytes for c.

Unions

union foo{
int a;

char b;
union foo *c

}

Provides enough space for the element.

C Arrays

int ar[2];

The number of elements is static in the declaration, you

can'tdo int ar[x]where x is a variable

(B2, JMLHCE, BHLMEH ZAAE /AR 2ZE. fREHE—1ZE, FHit, #C
iEEH, iBfpa-aflpa++#EAEN, HEAL LT E, Hiit, X Ta=-pafla++EX
Mg &AL

Can use pointer variable to access arrays.
An array is passed into a function as a pointer.

C Strings

This can be modified.
char string[] = "abc";
This can't. ZFEEE

char *string = "abc";

Ends witha \0.
55 FHRIEftSHmEL

FHEFTELEAFIRA, B,

"I am a string"
EFFFHRNSR R, FAEEAUZE TR \0 42, FlL, BF TR R A TR
TIPSR . 77 i 5 O A fil R T Bt R B EE RS 15 N i+ AR BOK 1,

TR R R W R E AR S 5, Bl

printf("hello, world\n");
YR F XA — TP R AR R, kb E&@d Fr R iz R, £
ARiZMH, printEHEZHE R FAEEASE AT IFH4E . s, F4F 8% &l
M — AR A LRI R E il

Br TEA MBSO, Frr A A%, REfR HpnessageIFHHINT

char =pmessage;
WL, &)

pmessage = "now is the time";
RHE AR T AR R A S pmessage, X RIFERARITFHHMNEH, mH
R RARE R E, CIESE AR TR ELD DR E TS,

THEMRAE L Z A RKIZER
char amessage[] = "now is the time"; /* FEX DB */
char s*pmessage = "now is the time"; (2 EX-A16%. %/

Ek W, amessage— /MU LATE BRI GAIE 75 B LA R 22 45 '\ 0 "I — 482 . B
AN TR AT ENR, Hamessageth&iRmE —AN ki E. 5 —H,
pmessagef— ik, HEERF -ANFHEFE, Z/5ETUABE LR R H hibht,
(BB FHFHEAAE, SREEAELN (ZRES-T),

pmessage: E—-{now is the time\Dl

amessage: Inow is the time\O]

B/ 57

fEiZAY, sHcHy A WsTHE| TIEARMIES . R e+ +mERITH Wz
RZAtt g FfF . RSsRF++FrRERBIEFHZEA R L cE. FRErER, £
sthAT B s T Z A, FAMBAF AR TR st MY IHALE . %7 FHE Rt R Fn s 5 1
N0 'HEATERBGE R, USROG SARIIAT . B Ja B A5 R A (i OOR t 47 1nl Y 5 7 & 1l 2 s 45 a1 A 6L
B, HIEEREHRMT \o Shik (RN E HH%E R) .

AT B FPHRERF, RIMEET, REXF o 'MLLEREZRI, BARFEH
Wi 2k SAVIE R 4 HOBN AT, R, iZeRBTdE—4 5 T AIEA:

/* strcpyri#: HHEH A FFFREHBE s E, EREH T XIIMRA3 2/

void strepy(char »s, char =»t)

{

while (#s++ = =t++)

L

int
foo (int arrayl],

unsigned int size)

{

What does this print? 4

printf (“%d\n”, sizeof (array)):; //////’ g
} ... because array is really

a pointer (and a pointer is

int architecture dependent, but
main (void) likely to be 4 or 8 on modern
(32-64 bit machines!)

int a[l10], b[5];
. foo(a, 10).. foo(b, 5) ..

What does this print? 40
printf (“$d\n”, sizeof(a)):; k/,ff//’/// P

Endianness

The network byte order is big-endian.
Endian conversion functions in C:

ntohs()
htohs()

C Memory Management

IVIVITIVE Y 7 W vovw

« Program’s address space contains sz bits assumed here)
4 regions: - FFFFFFFFhex) _stack

e stack: local variables inside functions, grows downward 1
» heap: space requested for dynamic data viamalloc ()
resizes dynamically, grows upward

* static data: variables declared outside functions, does not | __ _I_ Dz
grow or shrink. Loaded when program starts, can be heap
modified.

e code: loaded when program starts, does not change static data

¢ 0x0000 0000 hunk is reserved and unwriteable/unreadable code

so you crash on null pointer access
fkdeyEEy g ~ 0000 0000hex

- If declared outside a function,
allocated in “static” storage int myGlobal;

« If declared inside function, main () {
allocated on the “stack” int myTemp;
and freed when function }
returns

e main () is treated like
a function
+ For both of these types of memory, the management is automatic:
* You don't need to worry about deallocating when you are no longer using them

* But a variable does not exist anymore once a function ends!
Big difference from Java

* Every time a function is called, a new "stack frame" is fooA() { £00B(); }

allocated on the stack fooB() { fooC(); }

. fooC() { fooD(); }
- Stack frame includes:

* Return address (who called me?) fooA frame
* Arguments
* Space for local variables fooB frame

+ Stack frames uses contiguous
blocks of memory; stack pointer
indicates start of stack frame fooC frame

* When function ends, stack pointer moves up; frees memory

for fut tack f fooD frame
or future stack frames .
_ Stack Pointer ~ T
+ We’ll cover details later for RISC-V processor
erkeleyFFCS »

Managing the Heap
C supports functions for heap management:

e malloc() allocate a block of uninitialized memory
e calloc() allocate a block of zeroed memory
e free() free previously allocated block of memory

e realloc () change size of previously allocated block
* careful - it might move!
* And it will not update other pointers pointing to the same block of memory

