
Pointers, Arrays, Memory
Address vs value

 is a type that can point to anything. 
word alignment.

Pointer Arithmetic

Conclusion on Pointers

void∗

char *c; 
char **d; 
(c+5)-> c + sizeof(char)*5 ->c+5 
(d+7)-> d + sizeof(char*)*7 ->d+28

The actual value used by the compiler is the size what
the pointer are pointing to.



Struct

It's an instruction to C on how to arrange a bunch of bytes
in a bucket. 
Provides enough space and aligns the data with padding.



So the real memory layout will be: 
4 bytes for a, 
1 byte for b, 
3 bytes empty,
4 bytes for c.

Unions

Provides enough space for the largest element.

C Arrays

struct foo{ 
int a; 
char b; 
struct foo *c; 
} 

union foo{ 
int a; 
char b; 
union foo *c 
} 

int ar[2]; 



The number of elements is static in the declaration, you
can't do int ar[x] where x is a variable 

C Strings

This can be modified.

This can't. 字符串常量

Can use pointer variable to access arrays. 
An array is passed into a function as a pointer.

char string[] = "abc"; 

char *string = "abc"; 



Ends with a \0 . 



Endianness

The network byte order is big-endian. 
Endian conversion functions in C:

ntohs() 
htohs() 



C Memory Management



Managing the Heap


