
Pointers, Arrays, Memory
Address vs value

 is a type that can point to anything.

word alignment.

Pointer Arithmetic

Conclusion on Pointers

void∗

char *c;

char **d;

(c+5)-> c + sizeof(char)*5 ->c+5

(d+7)-> d + sizeof(char*)*7 ->d+28

The actual value used by the compiler is the size what
the pointer are pointing to.

Struct

It's an instruction to C on how to arrange a bunch of bytes
in a bucket.

Provides enough space and aligns the data with padding.

So the real memory layout will be:

4 bytes for a,

1 byte for b,

3 bytes empty,
4 bytes for c.

Unions

Provides enough space for the largest element.

C Arrays

struct foo{

int a;

char b;

struct foo *c;

}

union foo{

int a;

char b;

union foo *c

}

int ar[2];

The number of elements is static in the declaration, you
can't do int ar[x] where x is a variable

C Strings

This can be modified.

This can't. 字符串常量

Can use pointer variable to access arrays.

An array is passed into a function as a pointer.

char string[] = "abc";

char *string = "abc";

Ends with a \0 .

Endianness

The network byte order is big-endian.

Endian conversion functions in C:

ntohs()

htohs()

C Memory Management

Managing the Heap

