RISC (Reduced Instruction Set Computer)

A single instruction can only perform one operation.
Keep isa small as possible, makes it easier to build fast
hard ware.

RISC-V ISA

Registers

32 general propose registersinrv

Referred to as x0-x31.

Associated with the word's length 32-64-128 bits.

X0 is always set to be zero.

PC is aregister that holds the memory address of the
instruction being executed.

Store the return address
Update the value of the PC.
Store values in registers.

JAL (jump and link)

jal rd, Label The Iabellthat we
want to jump to

3 rd = return address

rd = register where the PC = PC + offset
return address will be

stored

« The label that we want to jump to gets translated by the
assembler to a 20-bit offset
« We’'ll learn about why it’s 20 bits later

We can choose register to hold the return address.

Usually utilize x1to hold ,So ithasan
alternate name

When we jump because of a loop or branch, we don't
need a return address. For example, if a if-statement
followed by else, when the instructions belong to if is
finished, then jump over else without return address.
To avoid saving the return address, we can specify x0
as the destination register.

jal x0,L1

and pseudo instruction for that is

JALR (jump and link register)

'[[Pasted image 20220828112933.png]l]

When we want to return from a function, the thing we
need to do is modifying PC's value.

jalr x0,rs,0

and pseudo instruction for that is

jr rs

If the register ra which contains return address, then the
pseudo instruction can be simplified as

ret

When we call another function, what happens to the value that
are stored in the registers?

We use the stack to store the info.
Stack

Stack Pointer(SP):A register that holds the memory
address of the location of the last item placed on the stack

(X2).

- When you place an item on bEEf £E£0pey -
the stack, you decrement l
the stack pointer

- PUSH
+ When you take an item off T

the stack, you increment the
stack pointer o

 POP Text
0001 0000pex

. Static data

Reserved

srkeley EEC o

How to Store a Value on the Stack

61C Spring 2022 McMaho

- If register x5 contains the data that we want to store on the

stack
addi sp, sp, -4 sw x5, O(sp)

SpP —

x5

sp —> sp —>

Saving registers

- We can save all of our registers before we call a function
* All registers would be saved by the caller

* Another thing we can do is save all the registers before we
use them

* All registers would be saved by the callee

Need to standardize how we do this
* Meet somewhere in the middle, I'll save some and you save some

* The registers that are saved by the caller and callee are specified by the
calling convention

Calling Convention

Temoporary registers
Saved by caller.
Saved registers
* Saved by callee.
mmmm_

zero Always Zero N/A
xl ra Return Address Caller
x2 sp Stack Pointer Callee
x5-17 t0-2 Temporaries Caller
x8-x9 s0-sl Saved Registers Callee
x18-27 s2-11 Saved Registers Callee
x28-31 t3-6 Temporaries Caller

Arguments and return registers

+ Our functions need to have a place where they can expect
the arguments and return values to be

- We will set aside registers x10-x17 to be argument registers

¢« New names => a0-a7

e a0 and al will also serve as return value registers

* If the caller has some temporary values in the registers that it
wants to use after making a function call, it must save those
values

Register [Name __|Description ________________Savedby

zero Always Zero N/A
xl ra Return Address Caller
x2 sp Stack Pointer Callee
x3 gp Global Pointer N/A
x4 tp Thread Pointer N/A
x5-7 t0-2 Temporary Caller
x8-x9 s0-sl Saved Registers Callee
x10-x17 a0-7 Function Arguments/Return Values Caller
x18-27 s2-11 Saved Registers Callee
x28-31 t3-6 Temporaries Caller

Calling a Function

1. Put parameters in a place where function can access them
+ Put parameters in argument registers

2. Transfer control to function
+ With a jump instruction

3. Acquire (local) storage resources needed for function
+ Make room for local variables on stack

4. Perform desired task of the function

5. Put result value in a place where calling code can access it
- a0-al register

6. Return control to point of origin

s ret

Comments in Assembly

add x1,x2,x3 # x1=x2+x3

Instructions in RV

Source
register 1

Operation — add x1, x2, x3 # x1 = x2 + x3

! f

Destination Source
register register 2

Source
register 1

!

Operation — sub x1, x2, x3 # x1 = %2 - x3

! f

Destination Source
register register 2

- Immediates are used to provide numerical constants

- Constants appear often in code, so there are special
instructions for them:

 Ex: Add Immediate:

f=qg - 10 (in C)
addi x3,x4,-10 (in RISC-V)

Pt
f

g

There is no substract immediate in RV cause we can
use addi to replace it.
Addi immediates are limited to 72 bits.

When you perform an operation with an immediate, it
IS to 32-Dits.

Load word(lw)

Register x15 contains the pointer to an int array stored in memory. How
do | store the value located at index 3 into register x10?

1w x10, 12(x15)

sizeof (int) = 4 et) B
Destination Offset ase offset must be a

Register (in bytes) register constant, it

cannot be a

register
x15 + 4(3)
Xx15—»
erkelev EE 0 1 2 3 4 S

Store word

Register x15 contains the pointer to an int array stored in memory. How
do | store the value located in register x10 to the 3rd index of the array?

sw x10, 12 (x15)

sizeof (int) = 4 Source Offset Base offset must be a
Register ~ (inbytes) register constant, it
cannot be a
register
x15 + 3(4)
X15—»
Jerkeley EE 0 1 2 3 4 5

Loading and Storing bytes

Loading and Storing Bytes

mputer Science 61C Spring 2022

* You can also transfer data at a byte granularity

lb x10, 3(x15)

Load Byte o T
Destination Offset Bgse
Register register

sb x10, 3(x15)

Store Byte et T B
Source Offset ase
Register register
erkeley EE (offset is still in bytes)

When you load a byte from mem, it is placed into the
byte of the destination register and

If you don't want the number to be sign extended, you
can use 1bu which will zero extend to fill the register.
When you store a byte, only the lower 8 bits of the
registeris copied into mem, so there is no sign

extension.
C Java
Logical operations operators operators RISC-V instructions

Bitwise AND & & and
Bitwise OR | | or

Bitwise XOR A A Xor

Shift left logical << << sll

Shift right >> >> srl/sra

shifting

- Shift by the contents of a register

sll x10, x11, x12 # x10 = x11 << x12
- Shift by a constant value

slli x10, x11, 2 # x10 = x11 << 2
If x10 contains 40 x10 =0b 0000 0000 0000 0000 0010 = 40
srli x11,x10,3 x11=0b 0000 000 0 0000 0000 0000 01071 =5
If x10 contains 41 x10 = 0b 0000 001 0000 0000 0000 0010 =41
srai x11,x10,3 x11=0b 0000 000 0 0000 0000 0000 01071 =5
If x10 contains -32 x10=0b 1111 - 1111 1111 1111 1110 =-32
srai x12,x10,4 x12=0b 1111 1111 1111 1111 1110=-2
If x10 contains -25 x10 = 0b 1111 1111 1111 1111 1110 = -25
srai x12,x10,4 x12=0b 1111 1111 1111 1111 1110=-2

* Right shifting positive numbers and even numbers is equivalent to
dividing by 2n with the fractional part of the result being truncated

* Right shifting negative odd numbers is equivalent to dividing by
2n and rounding the result towards negative infinity

¢ This is not the behavior that we want

* C arithmetic semantics is that division should round towards 0

Labels

A label tells where the program to go.

Conditional Branches

- Branch if equal
e beq regl, reg2, Ll

e If reg1 ==reg2, jump to code at the location of label L1, otherwise continue
executing the code in sequence

x10=a .
x11 = b beq x10,x11,Exit
if (a '= b) 12 = add x14,x13,x12
e =c¢c + d; Xle=C Exit:
x13=d
x14 =e

Branch if not equal
e bne regl, reg2, Ll

* Ifreg1 !=reg2, jump to code at the location of label L1, otherwise continue
executing the code in sequence

x10=a .
x11 = b bne x10,x11,Exit
if (a == b) 12 = add x14,x13,x12
e =c¢c + d; Xle=¢ Exit:
x13 =d
x14 =e

Branch on less than
e blt regl, reg2, L1

* Ifreg1 <reg2, jump to code at the location of label L1, otherwise continue
executing the code in sequence

x10 =a .
x11 = b blt x10,x11,Exit
if (a >= b) 19 = add x14,x13,x12
e=c¢ + d; Xle=cC Exit:
x13 =d

x14 =e

Branch on greater than or equal
e bge regl, reg2, L1

« If reg1 >=reg2, jump to code at the location of label L1, otherwise continue
executing the code in sequence

x10=a .
x11 = b bge x10,x11,Exit
if (a < b) 12 = add x14,x13,x12
e =c¢c + d; Xlz=0C Exit:
x13=d
x14=¢e

- blt and bge perform signed comparisons of the numbers
+ To perform unsigned comparisons, use bltu and bgeu

+ RISC-V doesn’t have "branch if greater than” or “branch if
less than or equal”. Instead you can reverse the arguments:

« A>BisequivalenttoB < A
« A<=BisequivalenttoB>=A

Unconditional bracnces

* Jump
e j label
* Always jump to the code located at label

IF-ELSE

if (a == b) x10 =2

e =c + d; x11=Db
else x12 =c
e =c¢ - d; x13=d
x14 =e
Loop
int A[20];

int sum = 0;
for (int i=0; i < 20; i++)
sum += A[i];

Assume x8 holds the
address of the array

Loop:

Done:

bne x10,x11,else
add x14,x12,x13
j done
else: sub x14,x12,x13
done:

add x9,x8,x0 # x9=&A[0]
add x10,x0,x0 # sum=0

add x11,x0,x0 # i=0

addi x13,x0,20 # x13=20

bge x11,x13,Done

lw x12,0 (x9) # x12=A[i]
add x10,x10,x12 # sum+=A[i]
addi x9,x9,4 # x9=8&A[i+1]
addi x11,x11,1 # i++

j Loop

