Single-Core Processor

Processor Memory
Enable?
Read/Write
Y

Program

Datapath
|_Program Counter (PC) |

—— Bytes

Registers

Write Data

Read Data

Arithmetic-Logic
Unit (ALU)

CPU

The active part of the computer that does all the work.

Data manipulation.
Decision making.

Datapath

Portion of the processor that contains hardware necessary
to perform operations required by the processor(the body)

Control

Portion of the processor that tells the datapath what needs
to be done.(the brain)

One-Instruction-Per-Cycle RISC-V
Machine

Stage of the Datapath

break up the process of "executing an instruction” into
stages, and then connect the stages to create the whole
datapath.

» Stage 1: Instruction Fetch (IF)

« Stage 2: Instruction Decode (ID)

Stage 3: Execute (EX) - ALU (Arithmetic-Logic
Unit)

Stage 4: Memory Access (MEM)

Stage 5: Write Back to Register (WB)

These five stages are executed in one clock cycle, which is
called One-instruction-Per-cycle.

T ————— e S e e ———
1. Instruction 2. Decode/ 5. Register

Fetch Register 3. Execute 4. memory Write

Read Access

time —s

Register write will be executed at the next rising edge of
clock.

Datapath components

Combinational elements

opP

1Carry|n l

32
sum Result
32
CarryOut B

32
Multiplexer ALU

Register

Write Enable

Data Ip Datq OUI
. N N
= Register Lfl
= \Write Enable: ck

o Low (or deasserted) (0):
Data Out will not change

o Asserted (1): Data Out will become Data In on
positive edge of clock

Register File

Consists of 32 registers

RW RA RB

® Register file (regfile, RF) consists Write Enable. S 5

of 32 registers:

o Two 32-bit output busses: busA and busW
busB 3 Registers
= One 32-bit input bus: busW -

= Register is selected by:
o RA (number) selects the register to put on busA (data)
o RB (number) selects the register to put on busB (data)
o RW (number) selects the register to be written
via busW (data) when Write Enable is 1
* Clock input (Clk)
o Clk input is a factor ONLY during write operation
o During read operation, behaves as a combinational
logic block:

= RA or RB valid = busA or busB valid after “access time.”

- uMagiCn Memory Write Enable Address
o One input bus: Data In Data In DataOut
o One output bus: Data Out 3

= Memory word is found by:

o For Read: Address selects the word to put on Data Out
o For Write: Set Write Enable = 1: address selects the

memory word to be written via the Data In bus
" Clock input (CLK)
o CLK input is a factor ONLY during write operation
o During read operation, behaves as a combinational logic

block: Address valid = Data Out valid after “access
time”

For operation we need to wait for the clock, just
put the address of register or memory, the data will
automatically pop up.

For operation we need to wait for the rising edge of
the clock to write data.

Each instruction during execution reads and updates the
state of

registers

pcC
Memory

Datapath
R-Format Datapath

Review

13 —format

T B € T N TS £ T3 A ¥ Bt 1 Y
— T T 5 s —
[funor | ws2 | wel | fumos | wd | opoode |

= E.g. Addition/subtraction add rd, rsl, rs2
R[rd] = R[rsl] + R[rs2]

sub rd, rsl, rs2
R[rd] = R[rsl] - R[rs2]

Berkeley

UNIVERSITY OF CALIFORNIA

RISC-V (20)

Implementing the add instruction

2524 2019 1514 1211

__

2524 2019 1514

-ﬁnm—

rsZ rsl add rd Reg—Reg OP

add rd, rsl, rs2

Instruction does two changes

Reg[rd] = Reg[rsl] + Reg[rs2]

Inst(11:7]

Inst{19:15] Reglrs1]

Reglrs2]

Inst(31:0]

RegWriteEnable (RegWEn)
=1
Control logic

2524 2019 1514 1211 76

31
rfunct7 | rs2 I rsl funct3| rd opcode
5 5 5 ‘7 Garcia, Nikoli¢

&% Timing Diagram for add

Inst(11:7]
Instf19:15]

RegirsTl

A DataA

Regirs2]

AddB patas
Reg []
A

lock 1]
d W Insti31:0] clk TRSQWEn

PC X 1000 X 1004 X

PC+4 X 1004 X 1008 X

inst[31:0] X add x1,x2,x3 X add x6,x7,x9 X
Reg[rsl] X Reg[2] X Reg[7] X
Reg[rs2] X Reg[3] X Reg[9] X
alu X Reg[2]+Reg[3] X Reg[7] +Reg[9]

Reg[1] 2727 X Reg[2]+Reg[3] X

Garcia, Nikoli¢

Berkeley

RISC-V (23)

sub almost the same as add, except now we need to
subtract operands.

Reg[rd] = Reg[rsl] +/- Reg[rs2]

Inst{11:7]

Inst(19:15] DataA

Inst[24:20]
DataB

Inst(31:0]

RegWriteEnable (RegWEn) ALUSel
=1 (add=0/sub=1)

Control logic
2524 2019 1514 1211

—-m-—

'7Gar¢:|a N|kol|c

I-Format Datapath
Addi

Datapath for add/sub

PC = PC + 4

Reg[rd] = Reg[rsl] + Imm

J

Instll:7]
Inst(19:15]
Inst(24:20]

AddrD Reglrs1)
AddrA DataA

v A\ 4

v

AddrB pqtaB

Reg[] n
A |
[d]3

Inst(31:0]

y

ALUSel

RegWriteEnable (RegWEn)
(add=0/sub=1)

=1

Control logic

Immediate should
be here

Berkeley

UNIVERSITY OF CALIFORNIA

Add a Mux at there

Reg[rd] = Reg[rsl] + Imm

—JDatuD

Inst(11:7]
Inst(19:15]

Inst[24:20] Reglrs2]
AddrB DataB

IAddrD Reglrsl]
AddrA DataA

v v

v

Regl]
F Y 1

ck Immi31:0]

Inst(31:0]

y

RegWriteEnable ﬁi;l_o/ AI.;LSeI :
= = add=0/sub=1
(RegWEN)=1 imm]) ()

Control logic

31 2019 1514 1211 76
| immf11:0] | rsi | 000 | =d 0010011

12 5 3 2
Berkeley RISC-V (31)

UNIVERSITY OF CALIFORNIA

= Reg[rsl] + Imm

DataD

Inst[11:7]

»AddrD

Inst(19:15]

Inst
[31:20]

Inst[31:0]

Inst(24:20]

Reg[] A

AddrA DataA
AddrB DataB

Reglrsl]

Reglrs2]

1 3

x

ImmI[31:0]

Control logic

RegWriteEnable BSel

(RegWEn)=1

(rs2=0/
Imm=1)

ALUSel
(add=0/sub=1)

Inst
[31:20]

Inst[31:0]

Reg[rd] = Reg[rsl] + Imm

ImmI[31:0]

ImmSel

Control logic

RegWriteEnable BSel

(RegWEN)=1

(rs2=0/
Imm=1)

ALUSel
(add=0/sub=1)

2019 1514

il__
inst[31:0]

--inst[31] - (sign-extension)--| inst[30:20]

imm[31:0]

 High 12 bits of instruction (inst[31:20])
inst[31:20] imm[31:0] copied to low 12 bits of immediate
(imm(11:0])
* Immediate is sign-extended by copying
ImmSel=| value of inst[31] to fill the upper 20 bits
of the immediate value (imm(31:12])

load

= RISC-V Assembly Instruction (I-type): 1w x14, 8 (x2)

31 2019 1514 1211 76
imm[11:0] rsl funct3 oo | opcode

12 5 3 5 7
offset[11:0] base width dest LOAD

000000001000 00010 I 010 I 01110 0000011

imm=+8 rsl=2 1w rd=14 LOAD

= The 12-bit signed immediate is added to the base
address in register rs1 to form the memory address

s This is very similar to the add-immediate operation but used to
create address not to create final result

R+l Arithmetic/Logic Datapath

M—"=
J
Inst[11:7] ddrD
C p-RAddr| R 1
>laddr eg[rs1]
Inst[19:15
pctd inst nstl] »]addra DataA >
Inst[24:20]
> Reg[rs2
AddrB pagap | R8I

clk
IMEM
Reg[] A

Inst [k
[31:20] Imm.
Gen Imm[31:0]
Inst[31:

ImmSel RegWriteEnable BSel ALUSel MemRwW WBSel

Control logic

Inst[11:7]

Inst[19:15]
|_Inst[24:20] |

Imm[31:0]

ImmSel RegWEn=1 BSel=1 ALUSel MemRW WBSel
=l =Add =Read =0

Control logic

0000011

0000011

funct3 field encodes size and
‘signedness’ of load data

*= Supporting the narrower loads requires additional logic
to extract the correct byte/halfword from the value
loaded from memory, and sign- or zero-extend the result
to 32 bits before writing back to register file.

o |t is just a mux + a few gates

S-Format

* sw: Reads two registers, rs1 for base memory address,
and rs2 for data to be stored, as well immediate offset!

sw x14, 8 (x2)
31 2524 2019 1514 1211 76
Imlel:S! rs2 rsl funct3 immL4:01 opcode

7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

0000000 01110 I 00010 010 01000 I 0100011

offset[1l1:5] offset[4:0]
= STORE

=0‘\\xf52=14 rsl=2 szb// =8

0000000 01000 [|combined 12-bit offset = 8

Garcia, Nikoli

ding sw to Datapath

i :'
a AJT
Inst[11:7] AddrD
C Addr Reglrs1]
pe+d Inst[19:15] Naddra Datan f——————
Inst[24:20]
AddrB DataB

clk

Reg[] A
| cik

Imm[31:0]

. 2

Inst[31:0] ImmSel RegWriteEnable Bsel ALUSel MemRW WABSel
=5 =0 =1 =Add =Write =%

(don’t care)

Control logic

Garcia, Nikoli¢

Berkeley

Inst[11:7] alu

B Inst[19:15]

inst(23:20)
dﬂi’-u’i

Imm[31:0]

ImmSel RegWEn=0 BSel=1 ALUSel MemRW
=S =Add =Write =*

Control logic

I+S Immediate Generation

31 30 25 24 2019 1514 12 11 6 0

imm[11:0] funct3 rd I-opcode | |
imm[11:5] o~ funct3 |imm[4:0]] S-opcode |s

inst[31:0]

inst[31] (sign extension) | inst[30:25] inst[24:20]
inst[31] (sign extension) | inst[30:25] inst[11:7]
31 1110 5 4 0
imm[31:0]
* Just need a 5-bit mux to select between two positions where low
five bits of immediate can reside in instruction

* Other bits in immediate are wired to fixed positions in instruction

B-Format

offset[12]|11:5] rsl funct3
rs2 offset[4:1|11]

= B-format is mostly same as S-Format, with two
register sources (rs1/rs2) and a 12-bit

immediate imm[12:1]
But now immediate represents values
-4096 to +4094 in 2-byte increments

= The 12 immediate bits encode even 13-bit signed
byte offsets (lowest bit of offset is always zero, so
no need to store it)

Need to compute and to compare
values of

PCSel= Inst[31:0] ImmSel RegWEn BrUn BrLT Bsel Asel pjygel MemRW WBSel
taken/not taken =B =0 BrEq =1 =1 44 =read =
Control logic

Branch Comparator

BrEq = 1,if A=B

A Branch]
5 —s{come BrLT = 1,if A<B

BrUn =1 selects unsigned
comparison for BrLT,
O=signed

BrgrE;” BGE branch: A >= B, if A<B

A<B = |(A<B)

12-bit immediate encodes PC-relative offset of -4096 to +4094
bytes in multiples of 2 bytes

Standard approach: Treat immediate as in range -2048..+2047,
then shift left by 1 bit to multiply by 2 for branches

Limtios vy

sign-extension | s| imm[10:5] | imm[4:0] | S-immediate
B-Immediate
sign-extension | s | imm(10:51 |immi4:01 [0 Gueieqpy 1)

Each instruction immediate bit can appear in one of two places
in output immediate value — so need one 2-way mux per bit

Lighting Up Branch Path

AddrA
Ar.ldrB

Reg|]

JWHIII

PCSel= Inst[31:0] ImmSel RegWEn BrUn BriT Bsel Asel p)yse] memRW WBSel
taken/not taken =B =0 Breg =1 1 =add =read =
Control logic

