R-TYPE(for register)

RISC-V Fields

RISC-V fields are given names to make them easier to discuss:

funct7 | rs2 | rsl | funct3 ‘ rd opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

Here is the meaning of each name of the fields in RISC-V instructions:

B opcode: Basic operation of the instruction, and this abbreviation is its

. opcode The field that
traditional name.

denotes the operation and

m rd: The register destination operand. It gets the result of the operation. format of an instruction.
B funct3: An additional opcode field.

m rsi: The first register source operand.

m rs2: The second register source operand.

B funct7: An additional opcode field.

I-TYPE(with immediate)

The compromise chosen by the RISC-V designers is to keep all instructions the
same length, thereby requiring distinct instruction formats for different kinds of
instructions. For example, the format above is called R-type (for register). A second
type of instruction format is I-type and is used by arithmetic operands with one
constant operand, including add i, and by load instructions. The fields of the I-type
format are

‘ immediate ‘ rsl ‘ funct3 ‘ rd ‘ opcode ‘
12 bits 5 bits 3 bits 5 bits 7 bits

The 12-bit immediate is interpreted as a two's complement value, so it can
represent integers from 2! to 2!'-1. When the I-type format is used for load
instructions, the immediate represents a byte offset, so the load word instruction
can refer to any word within a region of +2'' or 2048 bytes (+2° or 512 words) of
the base address in the base register rd. We see that more than 32 registers would be
difficult in this format, as the rd and rs1 fields would each need another bit, making
it harder to fit everything in one word.

S-TYPE(Store)

and 9 (for x9) is placed in the rd field. We also need a format for the store word
instruction, sw, which needs two source registers (for the base address and the

store data) and an immediate for the address offset. The fields of the S-type format
are

‘ immediate[11:5] ‘ rs2 ‘ rsi ‘ funct3 ‘ immediate[4:0] ‘ opcode ‘
7 bits 5 bits 5 bits 3 bits 5 hits 7 bits

The 12-bit immediate in the S-type format is split into two
fields, which supply the lower 5 bits and upper 7 bits. The
RISC-V architects chose this design because it keeps the

rs1and rs2 fields in the same place in all instruction
formats.

Branches

Format: {comparison} {reg1} {reg2} {label}

If we don’t branch

e PC=PC+4

If we do branch

e PC =PC + immediate

What range of instructions can we branch to?

1C Spring 2022

2’s complement range: [-2n-1, 2n-1-1]

With 12 bits: &= 211 bytes away from the PC

Instructions are 4-bytes, so we can jump £ 29 instructions
away from the current instruction

0x10000000
0x10000004
0x10000008
0x1000000C
0x10000010
0x10000014
0x10000018
0x1000001C

Instruction O

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

The last nibble is always 0x (0, 4, 8, or C)
0x0 = 0bO0O[0O
0x4 = 0b01j00
0x8 = 0b1000
0xC = 0b1l1j00

f

The last two bits
are always 0b00

« The last two bits are always 0, SO we can increase our range
by not storing those bits

encoded immediate = 0b0000 0000 0011

actual immediate offset = 0b00 0000 0000 1100

« (PC + immediate) will go 3 instructions (or 12 bytes) away

« Now, we can jump = 211 instructions (or = 213 bytes) away
from the current PC

Branch Format

omputer Science 81C Spring 2022

31 30 25 24 20 19 1514 12 11 8 7 6 0
imm[12] (imm[10:5] rs2 rsl funct3 [imm[4:1] [imm[11] opcode
1 6 5 5 3 4 1 7

The label that we

jal rd, Label €«— ,
want to jump to

?

rd = register where the
return address will be

stored
31 30 21 20 19 12 11 7 6 0
imm[20] (imm[10:1] | imm[1l1l] |imm[19:12] rd opcode

1 10 1 8 5 7

U-Format

LUI to create long immediates

ing 2022

+ LUl writes the upper 20 bits of the destination with the
immediate value, and clears the lower 12 bits.

+ Together with an ADDI to set low 12 bits, can create any 32-
bit value in a register using two instructions (LUI/ADDI).

LUI x10, 0x87654 # x10
ADDI x10, x10, 0x321 # x10

0x87654000
0x87654321

Pseudo-instruction that performs lui and addi

LUI x10, 0x87654 # x10 = 0x87654000
ADDI x10, x10, 0x321 # x10 = 0x87654321
LI x10, 0x87654321 # x10 = 0x87654321

- |If the value being added is negative, add 1 to the upper 20
bits before adding the 12-bit value

« How to set OXxABCDEEEE?

lui x10, ABCDF # x10
addi x10, OxEEE # x10

0xABCDFO000
OxABCDEEEE

- 1i instruction will automatically handle this corner case

Add Upper Immediate PC (AUIPC)

1C Spring 2022

* rd = PC + (immediate << 12)

auipc x5, OxABCDE

Destination Immediate
register value

x5 = PC + OxABCDEOOO

U-Format for Upper Immediate Instructions

31 12 11 7 6 0

imm[31:12] rd opcode
20 5 7

Summary

31 25 24 20 19 15 14 12 11 T 6 0

R funct?7 rs2 rs1 funct3 rd opcode
| imm[11:0] rsi funct3 rd opcode
I funct?7 imm([4:0] rs1 funct3 rd opcode
S imm[11:5] rs2 rsi funct3 | imm[4:0] opcode
B imm[12|10:5] rs2 rs1i funct3 |imm[4:1|11]| opcode
U imm[31:12] rd opcode
J imm([20|10:1|11]19:12] rd opcode

Immediates are sign-extended to 32 bits, except in I* type instructions and s1tiu.

Summary of RISC-V Instruction Formats

Computer Science 61C Spring 2022

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7] rs2 | sl | funct3 | rd | opcode | R-type
| imm|[11:0] | sl | funct3 | rd | opcode | I-type
| imm[11:5]] rs2 | rsl | funct3 | imm[4:0] | opcode | S-type
| imm(12] [imm[10:5] | rs2 | rsl | funct3 |imm(4:1] | imm[11] | opcode | B-type
| imm[31:12] | rd | opcode | U-type
| imm[20] | imm[10:1] | imm[11] | imm[19:12] | rd | opcode | J-type

Type ImmSel (default) Bits 31-20 | Bits 19-12 Bit 11 Bits 10-5 Bits4-1 | BitO
| oboeo inst[31] inst[30:20]

S obooel inst[31] inst[30:25] inst[11:7]

B @bele inst[31] inst[7] inst[3@:25] | inst[11:8] 5]
U ebeil inst[31:12]]

J @blee inst[31] inst[19:12] | inst[20] inst[3@:21] 0

