
MapReduce
Abstract

A programming model and an associated implementation for processing and generating large data
sets.

Map process a k/v pair to generate a set of intermediate k/v pair. Reduce function that merges all
the intermediate values associated with the same intermediate key.

Intro
Issues

parallelize the computation.

distribute data.

handle failures.

Load balancing.

Programming Model
Input: k/v pairs.

Output: k/v pairs.

Map func takes an input pair and produces a set of intermediate k/v pair.

Then the mapreduce library groups the intermediate pair according to the key.

 The reduce function accepts an intermediate key and set of values for that key. Then merges together
these values to form a possibly smaller set of values.

Example

Frequency Counting(Each word in text)

#<String word ,String frequency>
map(String key , String value):
 # key: doc name
 # value: contents of document
 for word in value:
 EmitIntermediate(word,"1")

reduce(String key , Iterator values):
 # key: a single word
 # values: set of values for the word, in this case, the frequency of each word.
 result = 0
 for v in values:
 result += int(v)
 Emit(str(result))

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Distributed Grep

Count of URL Access Frequency.

Reverse Web-Link Graph

Implementation
Many different implementations of the MapReduce interface are possible. The right choice depends on the
environment.

In paper's case: large clusters of commodity PCs connected together with switched Ethernet.

Map: Invokes on multiple workers parallelly by auto-partitioning the input file into splits.

Reduce: Reduce invocations are distributed by partitioning the intermediate key space into pieces using a
partitioning function (e.g.,).

Overview

1. The Mapreduce library in the user program splits the files into pieces(typically 64 MB). Then call
fork() to start up many copies(Master, worker) on a cluster of machines.

2. The master picks idle workers and assigns each one a map task or a reduce task. map tasks and
reduce tasks.

3. Worker reads the split and parses the input data into K/V pairs and utilize user-definde Map function to
produce intermediate K/V pairs in memory.

4. Buffered pairs splited into regions are written to local disk Periodically.

5. When master assign reduce task to reduce workers, it uses RPC to read data. Then sorts it by the
intermediate keys so that all occurrences of the same key are grouped together.

6. The reduce worker iterates over the sorted intermediate data and for each unique intermediate key
encountered, it passes the key and the corresponding set of intermediate values to the user’s
Reduce function. The output of the Reduce function is appended to a final output file for this reduce
partition.

7. When all the work is done, the master wakes up user program.

The final output is in output files. If user want to combine these into one large file, then call another
mapreduce task.

Fault Tolerance

Worker Failure

Master pings every worker periodically, if no response, reset all the tasks by the worker, and let
others to finish. For completed map tasks , it need to re-execute since the file is locally stored
and notify reduce workers to read datas from the new map worker, for reduce tasks , no need to
re-execute, since the output is reachable for user.

Master Failure

Write periodic checkpoints, archive master status.

Task Granullarity

, should be much larger than # of workers.

In practice, we tend to choose so that each individual task is roughly 16 MB to 64 MB of input data, make
 a small multiple of the number of worker machines we expect to use

Backup Tasks

Straggler:a machine that takes an unusually long time to complete one of the last few map or reduce
tasks in the computation. Lengthens the tot.

Ways to alleviate: When a MapReduce operation is close to completion, the master schedules backup
executions of the remaining in-progress tasks. The task is marked as completed whenever either the
primary or the backup execution completes.

Refinement
Partition function

default:

URL case: , causes all URLs from the same host to end up in the
same output file.

Ordering Guarantee

within a given partition, the intermediate key/value pairs are processed in increasing key order.

Combiner Function

Allow user to specify an optional Combiner function (basically the same as reduce function) that
does partial merging of this data before it is sent over the network. Since there is significant
repletion in the intermediate K/V pairs produced by map task, e.g., <the ,"1"> . If send them all,
it would be a loss for network bandwidth.

Input & output types.

Library offers serveral formats of input data.

"text mode": treats each line as a k/v pair. key: offset of the word, value: content of the line.

Users can add support for a new input type by providing an implementation of a simple
reader interface.

Skipping Bad Records

Bugs that cause the Map or Reduce functions to crash deterministically on certain records.

Bugs in user code

fix

Bugs in third-party lib or okay to skip some record.

Optional mode of execution where the MapReduce library detects which records cause
deterministic crashes and skips these records in order to make forward progress.

Local Execution

To help facilitate debugging, testing. we have developed an alternative implementation of the
MapReduce library that sequentially executes all of the work for a MapReduce operation on the
local machine.

Conclusions
Restricting the programming model makes it easy to parallelize and distribute computations and to
make such computations fault-tolerant.

Network bandwidth is a scarce resource. A number of optimizations in our system are therefore
targeted at reducing the amount of data sent across the network: the locality optimization allows
us to read data from local disks, and writing a single copy of the intermediate data to local disk saves
network bandwidth.

Third, redundant execution can be used to reduce the impact of slow machines, and to handle
machine failures and data loss.

	MapReduce
	Abstract
	Intro
	Programming Model
	Example

	Implementation
	Overview
	Fault Tolerance
	Task Granullarity
	Backup Tasks

	Refinement
	Conclusions

