Lecture 14:
Object Detectors
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Poll Results

@ Option 1: Keep mini-project, only 1.5
weeks between each of HW4, HWS5,
HW6, and project

@ Option 2: Cancel mini-project, allowing
for 2 weeks between each of HW4,
HWS5, and HW6

Many comments / suggestions in comments and on Piazza:
- Option 2: Want more weight on HW4-6, less on midterm
- Optional project

- Drop one HW assignment

- Extra late days

March 9, 2022
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Declsion

* We will keep 2-week gap between each of HW4-6
 Students can also complete a project if they wish (spec out next week)

e Each student can choose one of the following options:

March 9, 2022

Justin Johnson Lecture 14 - 3



Declsion

* We will keep 2-week gap between each of HW4-6
 Students can also complete a project if they wish (spec out next week)
e Each student can choose one of the following options:

Option A:
Do all assignments,
Do not do project.

Grading scheme:
HW1-3:12%
Midterm: 22%
HW4-6: 14%
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Declsion

* We will keep 2-week gap between each of HW4-6
 Students can also complete a project if they wish (spec out next week)
e Each student can choose one of the following options:

Option A: Option B:
Do all assignments, Do 5 or 6 assignments
Do not do project. Do project
Grading scheme: Grading scheme (whichever gives you better grade):
HW1-3:12% HW1-3:12% Original grading scheme:
Midterm: 22% Midterm: 22% HW1-6: 10%
HW4-6: 14% HW4-6: 14% Midterm: 20%
Project: Replaces lowest HW Project: 20%
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In addition: Everyone gets +3 late days
Decision (cannot be applied to A6 or project)

* We will keep 2-week gap between each of HW4-6
 Students can also complete a project if they wish (spec out next week)
e Each student can choose one of the following options:

Option A: Option B:
Do all assignments, Do 5 or 6 assignments
Do not do project. Do project
Grading scheme: Grading scheme (whichever gives you better grade):
HW1-3:12% HW1-3:12% Original grading scheme:
Midterm: 22% Midterm: 22% HW1-6: 10%
HW4-6: 14% HW4-6: 14% Midterm: 20%
Project: Replaces lowest HW Project: 20%
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Last Time: Transfer Learning

1. Train on ImageNet

|_Fclo00 | Add randomly — [ NewFCLayer

| FC-4096 | e : /~ | Fcaoss |

oo | initialized final FC oo |
= layer for new task r——
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool Initialize from MaxPool
Conv-256 ImageN et mo del Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64

| Image | \ | Image |
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Last Time: Localization Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE,

DOG, DOG, CA
- VAN oKy Y, Y,
e Y Y
No spatial extent  No objects, just pixels Multiple Objects

This image is CCO public domain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Last Time:; R-CNN

Bbox || Class
Bbox | | Class 1
Bbox | | Class N
Conv
Conv Net
Conv Net
Net

ﬁ Warped image

regions (224x224)

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Forward each
region through

ConvNet

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Last Time:; R-CNN

Bbox || Class
Bbox | | Class 1
Bbox | | Class
Conv
Conv Net
Conv Net
Net

ﬁ Warped image

regions (224x224)

Forward each
region through

ConvNet

Regions of

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t, t,, t,)

Problem: Very slow! Need
to do 2000 forward passes
through CNN per image

Interest (Rol)
from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Last Time:; R-CNN

Classify each region

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox | | Class L] Rol: 4 numbers (t,, t,, t;, t,)
Bbox | | Class Forward each
Conv _ Problem: Very slow! Need

Conv Net region through to do 2000 forward passes

Cony Net ConvNet through CNN per image

Net ﬁ Warped image

regions (224x224) Idea: Overlapping proposals

cause a lot of repeated work:
same pixels processed many
times. Can we avoid this?

A | & Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

“Slow” R-CNN
Process each region
independently

Bbox || Class

Bbox Class
Bbox | | Class N

Conv
Conv Net
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Justin Johnson
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“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class N
Conv
Conv Net
Net
Conv
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

ya

/Image features

“Backbone” T
network:

AlexNet, VGG,
ResNet, etc

ConvNet

)
at

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Justin Johnson

-
£

Run whole image

through ConvNet
: —

Input image
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“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class N
Conv
Conv Net
Net
Conv
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
Process each region

. independently
Regions of
Interest (Rols) — 5 Bbox || Class
OoX ass
from a proposal o ™
method Conv
//é 7:J/Image features Cony \et
“Backbone” T Run whole image
network: through ConvNet
AlexNet, VGG, g
ConvNet —

ResNet, etc

-
&

@y [nput image

Girshick, “Fast R-CNN”, ICCV 2015. Figure yright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
Process each region

: independently
Regions of
Interest (Rols) Bbox || Class
Bbox | | Class
from a proposal ~— ,— Crop + Resize features

Bbox | | Class N

methoa @éﬁ/lmage features conv

Conv Net
“Backbone” Run whole image
network: through ConvNet
AlexNet, VGG, 7
ResNet, etc ot

LT

5
~

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure yright Ross Girshick, 2015; s e. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
Process each region

. independently

Regions of = = [| Per-Region Network

Interest (Rols) 5 5 — = Bbox || Class
OoX ass

from a proposal /t7 /'7 Crop + Resize features —=—ro—1 &

method /2 ! 7&5/Image features o Cﬁ:tv

“Backbone” Run whole image

network: through ConvNet

AlexNet, VGG, P i *

ResNet, etc = Ly

5
~

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure yright Ross Girshick, 2015; s e. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box
Class | | Class | | Class | transform per region

“Slow” R-CNN

Process each region
. i t f independently

Regions of = Per-Region Network

Interest (Rols) 5 — = Bbox || Class

OoX ass

from a proposal /t7 /'7 Crop + Resize features —=—ro—1 &

method /2 ! 7&5/Image features o Cﬁ:tv
“Backbone” Run whole image

network: through ConvNet

AlexNet, VGG,

ResNet, etc Com e

LTt

Girshick, “Fast R-CNN”, ICCV 2015. Figure yright Ross Girshick, 2015; s e. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box

Class | | Class | | class | transform per region
1) f f Per-Region network is

Regions of - Per-Region Network relatively lightweight
Interest (Rols) 5
from a proposal )7 /'7 Crop + Resize features
method @iﬁ/lmage features
“Backbone” Run whole image
network: through ConvNet Most of the computation
'Ii‘lees)l(\lNe?ctle\:cGG’ Conuhan * happens in backbone
’ 4 network; this saves work for
i overlapping region proposals

» Input image

Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN
Bbox | | Bbox || Bbox | Category and box c o
Class | | Class | | Class | transform per region Xamp e..
When using
: AlexNet for
Regions of = - = || Per-Region Network . .
Interest (Rols) z = = detection, five
from a proposal Crop + Resize features conv layers are
method @ used for
44 &Mlmage features backbone and
“Backbone” un whole image two FC layers are
network: hrough ConvNet used for per-
AlexNet, VGG, = region network
ConvNet =
ResNet, etc

nput image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Softmax |

Fast R-CNN =

3x3 conv, 512

Bbox | | Bbox | | Bbox | Category and box TN,
. Example:
Class | | Class | | Class | transform per region T
S For ResNet, last
3x3 cony, 512
‘ . 28 oy 5122 stage is used as
Regions of =zl [z[| [z ]| Per-Region Network : 8e 1>
Interest (Rols) 5 5 5 per-region
from a proposal Crop + Resize features T network; the rest

of the network is

mEthOd @ 5 33 oV 128
/ > & /Image features 3x3 conv, 128 used aS backbone

3x3 conv, 128

“Backbone” un whole image
network: hrough ConvNet e
AlexNet, VGG, R 20 con o
ResNet, etc Sl - — ——

3x3 conv, 64

200
i
|

nput image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Bbox | | Bbox || Bbox | Category and box
Class | | Class | | Class | transform per region

t t 1

Regions of /z = /z Per-Region Network

Interest (Rols) 5

from a proposal & /t7 Crop + Resize features How to crop
method &Mlmage features features?
“Backbone” Run whole image

network: through ConvNet

AlexNet, VGG, o =

ResNet, etc E e —

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Recall: Receptive Fields

Every position in the
output feature map
depends on a 3x3
receptive field in the input

3x3 Conv
Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8
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Recall: Receptive Fields

Every position in the

output feature map
depends on a 3x3

— receptive field in the input

3x3 Conv
Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8
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Recall: Receptive Fields

Every position in the
output feature map
depends on a 5x5
receptive field in the input

3x3 Conv 3x3 Conv
Stride 1, pad 1 Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8
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Recall: Receptive Fields

Moving one unit in the
output space also moves
the receptive field by one

3x3 Conv 3x3 Conv
Stride 1, pad 1 Stride 1, pad 1

Input Image: 8 x 8 Output Image: 8 x 8
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Recall: Receptive Fields

(0, 0)

‘ ‘ ‘ ‘ ‘ Moving one unit in the
output space also moves
the receptive field by one

3x3 Conv 3x3 Conv
Stride 1, pad 1 Stride 1, pad 1

There is a correspondence
between the

and
the coordinate system of

Input Image: 8 x 8 the output Output Image: 8 x 8

(1,1)
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Projecting Points

Input Image: 8 x 8

Justin Johnson

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 3x3 Conv
Stride 1, pad 1 Stride 1, pad 1

There is a correspondence

between the
and

the coordinate system of
the output

Lecture 14 - 28

(1,1)
Output Image: 8 x 8
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Projecting Points

Input Image: 8 x 8

Justin Johnson

Same logic holds for more complicated
CNNs, even if spatial resolution of
input and output are different

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 2x2 MaxPool
Stride 1, pad 1 Stride 2

There is a correspondence

between the
and

the coordinate system of
the output
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(1,1)
Output Image: 8 x 8
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Projecting Points

Input Image: 8 x 8

Justin Johnson

Same logic holds for more complicated
CNNs, even if spatial resolution of
input and output are different

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 4x4 MaxPool
Stride 1, pad 1 Stride 4

There is a correspondence

between the
and

the coordinate system of
the output
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(1,1)
Output Image: 8 x 8
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Projecting Boxes

Input Image: 8 x 8

Justin Johnson

We can use this idea to project
bounding boxes between an
input image and a feature map

(0, 0)

We can align arbitrary
points between coordinate
system of input and output

3x3 Conv 4x4 MaxPool
Stride 1, pad 1 Stride 4

There is a correspondence

between the
and

the coordinate system of
the output

Lecture 14 - 31

(1,1)
Output Image: 8 x 8
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Cropping Features: Rol Pool

Input Image
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Justin Johnson
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Cropping Features: Rol Pool

Input Image
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Justin Johnson

\
‘.~~~ \ > NS .
N VT Rty J =

Image features
(e.g. 512 x 20 x 15)

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)
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Cropping Features: Rol Pool

(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal \

onto features

Image features
(e.g. 512 x 20 x 15)

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Justin Johnson
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Cropping Features: Rol Pool

Project proposal \ grid cells

Input Image
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

onto features

AN N BUARE  K

“Snap” to

Image features
(e.g. 512 x 20 x 15)

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Justin Johnson
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Cropping Features: Rol Pool Divide into 2x2
“Snap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Want features for the
box of a fixed size

(2x2 in this example,
7x7 or 14x14 in practice)

Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool Divide into 2x2
“Snap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

\ 4

Region features
(here 512 x2 x 2;
In practice 512x7x7)

Image features

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the
same size even if input

regions have different sizes!

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool Divide into 2x2
“Snap” to grid of (roughly)

Project proposal \ grid cells equal subregions

onto features

Max-pool within
each subregion

\ 4

| Region features
| (here 512 x 2 x 2;
In practice 512x7x7)

A yEA
VTRV T L PR YNy
L o Vel s N TR NS SY

Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the
Problem: Slight misalignment due to same size even if input
Girshick, “Fast R-CNN”, ICCV 2015. snapping; different-sized subregions is weird regions have different sizes!
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Divide into equal-sized subregions

Cropping Features: Rol Aligh  (may not be aligned to grid!)

, No “snapping”!
Project proposal

onto features

Want features for the
box of a fixed size

CNN (2x2 in this example,
/x7 or 14x14 in practice
- P )
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017.
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Divide into equal-sized subregions

Cropping Features: RoO| A||gn (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features

in each subregion using

bilinear interpolation
| oo o0
e

CNN
o0 |00
— o0 |00
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017
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Divide into equal-sized subregions

Cropping Features: RoO| A||gn (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
i bilinear interpolation
G \ A //
NI e f6,5 f7,5
i ‘
.5,5.8
KA U YA Y, v\ ;;"/;"'l" | h N f @ ‘f
~ 6,6 7,6
fry = Z | 1fl-J max(0,1 — [x — x;|) max(O, 1-— |y — yj|) s
L,j=

Feature f,, for point (x, y) is a
linear combination of features
at its four neighboring grid cells:
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Divide into equal-sized subregions

Cropping Features: RoO| A||gn (may not be aligned to grid!)

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
o bilinear interpolation
h \ U IvY //
e fe.s f; 5
—1 - . | W ’/ ‘
7
\ L ! ¢ | 6.5,5.8
W AR A\ N f f
_ ~o | 6,6 7,6
frxy = _ fl] max(0, 1 — |x — x;|) max(0,1 — [y — y;[) ~
L] . .
Feature f,, for point (x, y) is a
—_ * * * * Xy /
f6-5,5-8 B (f6,5 0.5%0.2)+ (f7,5 0.5%0.2) linear combination of features
+ (fg* 0.5%0.8) + (f;* 0.5 * 0.8) at its four neighboring grid cells:
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Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
s bilinear interpolation
' I -
L e fe s fzs
CNN I | *
| 0.8
/ l , 0.5 6-5,5.8
Tk ' N < ® ®
o ~~_ fe f7 6
frxy = _ _fi,jmaX(Oyl_ lx — x;|) max(0,1 — |y — y;[) SN\ ’
v/ Feature f,, for point (x, y) is a
_ * X * E 3 Xy ’
f5-5»5-8 B (f6;5 0.5%0.2) + (f7,5 0.5%0.2) linear combination of features
+ (fg* 0.5%0.8) + (f;* 0.5 * 0.8) at its four neighboring grid cells:
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Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features

g O

W50 0 ARG AN o
S B P > X Aoet
AN RN W& X

fxyz __ﬁ,jmax(oil_|x_xi|)max(011_|y_yi)
L]

f6.5,5.8 - (f6,5 * 0.5 * 0.2) + (f7’5 * 0-5 * 0.2)
+(fs6* 0.5 * 0.8) + (f; 5 * 0.5 * 0.8)

in each subregion using
bilinear interpolation

7

7 | Tes 75

Feature f,, for point (x, y) is a
linear combination of features
at its four neighboring grid cells:
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Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
s bilinear interpolation
Fouk \ INUIY //
B e fe s f; 5
oo e 3 ®
CNN | — N
flann L ‘e e 0.2 %2 L°°F
R Ly L B ¢ o
VR ~~_ | Te6 f7 6
frxy = _ _fi,jmaX(Oyl_ lx — x;) max(0,1 — |y — y;|) N S ’
v/ Feature f,, for point (x, y) is a
—_ * * * * Xy ¢
f5-5»5-8 B (f6,5 0.5%0.2) + (f7,5 0.5%0.2) linear combination of features
+ (fg* 0.5%0.8) + (f;4* 0.5 * 0.8) at its four neighboring grid cells:
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Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
e bilinear interpolation
ol \ 'Y //
v e f6,5 f7,5
— | /’/ ‘
| ! ¢ | 6.5,5.8
\\ > < @0.2
R ~o_ fee 05 f, .
fxy = _ _fi,jmaX(Oyl_ lx — x;|) max(0,1 — [y — y;]) SN\ ’
K Feature ., for point (x, y) is a
—_ * * * * Xy /
f6-5,5-8 B (f6,5 0.5%0.2) + (f7,5 0.5%0.2) linear combination of features
+ (fg* 0.5%0.8) + (f;* 0.5 * 0.8) at its four neighboring grid cells:

Justin Johnson Lecture 14 - 46 March 9, 2022



Cropping Features: Rol Align

. \No “snapping”!  Sample features at
Project proposal .
regularly-spaced points

onto features . . .
in each subregion using
; bilinear interpolation
oo 060 After sampling, max-
©0 1 00 pool in each subregion
CNN —
o0 |00
o o0 |00 ”
AN A Y IR T Region features
Input Image Image features (here 512 x 2 x 2;
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) ’

In practice e.g 512 x7 x 7)

He et al, “Mask R-CNN”, ICCV 2017
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Fast R-CNN vs “Slow” R-CNN

Fast R-CNN: Apply differentiable “Slow” R-CNN: Apply differentiable
cropping to shared image features cropping to shared image features
Bbox | | Bbox || Bbox | Category and box Bbox || Class
Class | | Class | | Class | transform perregion Bbox | | Class
. § i 1 LS
Regions of = Per-Region Network Bbox | | Class Conv Forward each
Interest (Rols) 3 Conv Net region through
from a proposal & b Crop + Resize features c Net ConvNet
method /;t7 onv
iﬁ Image features Net & Warped image
“Backbone” Run whole image A regions (224x224)
network: through ConvNet

AlexNet, VGG, I _,’7 Regions of

ResNet, etc Input : Interest (Rol)
L image / s BB from a proposal
y . : method (~2k)

Inputimage
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Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tral ni ng tl me (HOU rS) B Including Region propos... [l Excluding Region Propo...
SPP-Net 23
Fast R-CNN 8.75
B 23
Fast R-CNN
0 25 50 75 100 0.32
0 15 30 45 60

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tral ni ng tl me (HOU rS) B Including Region propos... [l Excluding Region Propo...
SPP-Net 23
Fast R'CNN. 8.75 g 2 Problem: Runtime
Fast R-CNN < i
0 - - - 100 0.32 dominated by

' |
region proposals!

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tral nlng tl me (HOU I"S) I Including Region propos... [l Excluding Region Propo...
SPP-Net 23
Fast R-CNN- 8.75 g 2 Problem: Runtime
Fast R-CNN < i
0 - - - 100 0.32 dominated by

' |
region proposals!

0 15

Recall: Region proposals computed by
. s N . ” .
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. h eurl St IC Se I e Ct Ive Se arc h d |go rlt h m on
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014

Girshick, “Fast R-CNN”, ICCV 2015 CPU -- |et's Iearn them with a CNN instead!

Justin Johnson Lecture 14 - 51 March 9, 2022



Faster R-CNN: Learnable Region Proposals

Insert Region Proposal

Network (RPN) to predict
proposals from features = A b I

> proposals/ /
Region Proposal Network 5
Otherwise same as Fast R-CNN:
feature map

Crop features for each -
proposal, classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 »fml./
Figure copyright 2015, Ross Girshick; reproduced with permission
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Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

¥

iﬁé " XA \.f

| v 7 \
k3t R BRAPON Al
T TR A R
R LR )
e \!
1‘)&1 -\ ‘g'i
\’ \ N 7, r
’;fsrf‘/'-:::"‘zfz«.'i.l“:y‘f:-.'/ L NSO ‘fn T k"\u

Input Image N Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

Iput Imag
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

Iput Imag
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

Iput Imag
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

- AV o\
0 N J LR S W\
S O NN AT R L
47 W SR e LA A0 N - N
Y 2N A

AL ol \

rT‘\age‘
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

BB AL

b - Syl
gl o }

o o

AN i RN
endilinte ke i Jf PNl
B A N R LN P
Image feature Classify each anchor as
(e.g. 3 x 640 x 480) (e.g.512 x5 x 6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

| Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Imagine an anchor box

Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a pointin the input

| Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Predict object vs not object

Region PrOpOSa| Network (RPN) scores for all anchors with

a conv layer (512 input

Run backbf)ne CNN.to ge’F Each fe.atu.re corr.esponds filters, 2 output filters)
features aligned to input image to a pointin the input
—_— Anchor is
object?
2X5x6
Conv
Y G 4 /
AR R
Image features Classify each anchor as
(e.g. 3 x 640 x 480) (e.g. 512 x5 x 6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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For positive anchors, also
predict a transform that
converting the anchor to

Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds  the (like R-CNN)
features aligned to input image to a pointin the input
Anchor is
object?
2x5x6
nputTmage Image features Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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For positive anchors, also
predict a transform that
converting the anchor to

Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds  the (like R-CNN)
features aligned to input image to a point in the input Predict transforms with conv
—_— Anchor is
object?
2X5x6
Conv
Anchor
—_—
| | — transforms
ApUT IMage Image features Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image to a pointin the input

Each feature corresponds

el VAT R YA TN & W\‘ R ANNER ul

- . : ‘,'J 5 2ol :/« 3 J‘;:',“{:""‘ *

b b\ : \ s \eL f‘ 5 ey

it N B ARG ;-‘\;‘.,ejhﬂ;;g(s"};%,{‘»:‘a“,
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

In practice: Rather than using
one anchor per point, instead
consider K different anchors
with different size and scale
(here K = 6)

Anchor is
i object?

2Kx5x6
Conv

Anchor
e

- — transforms

4K x5x6

March 9, 2022
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a pointin the input (here K =6)
Anchor is
\ .
object?
2Kx5x6
Conv
_‘ R Anchor
Al — ~ transforms
e bi‘\‘ L AN ‘M LR X2
Input Image Image features During training, supervised
(e.g. 3 x 640 x 480) (e.8.512x5x6) positive / negative anchors and

box transforms like R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

March 9, 2022
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a pointin the input (here K =6)
- Anchor is
object?
2Kx5x6
Conv
Anchor
e
| transforms
DU mipo\e ol 4K x5x6
IR IR O RN ,
Input Image Image features Positive anchors: >= 0.7 loU with
(e.g. 3 x 640 x 480) (e.8.512x5x6) some GT box (plus highest loU to
each GT)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

March 9, 2022
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a pointin the input (here K =6)
Anchor is
\ .
object?
2Kx5x6
Conv
IR Anchor
Ll | G l? . transforms
X P TS ﬁzjj;,‘;: {,.i“.(,,’.,“‘*;jj‘
o] e B AT O jifa#u“,& 4Kx5x6
Input Image Image features Negative anchors: < 0.3 loU with
(e.g. 3 x 640 x 480) (e.g. 512 x5 x 6) all GT boxes. Don’t supervised

transforms for negative boxes.

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

March 9, 2022
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Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image to a pointin the input

Each feature corresponds

el VAT R YA TN & W\‘ R ANNER ul

- . : ‘,'J 5 2ol :/« 3 J‘;:',“{:""‘ *

b b\ : \ s \eL f‘ 5 ey

it N B ARG ;-‘\;‘.,ejhﬂ;;g(s"};%,{‘»:‘a“,
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

In practice: Rather than using
one anchor per point, instead
consider K different anchors
with different size and scale
(here K = 6)

Anchor is
i object?

2Kx5x6
Conv

Anchor
e

- — transforms

4K x5x6

March 9, 2022
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In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a pointin the input (here K =6)
Anchor is
\ .
object?
2Kx5x6
Conv
_‘ R Anchor
; . K "‘*[ | - transforms
A b‘i‘\‘ i 3 N O BT ;Y;ﬁ'r,g}%aﬁ;%g‘{ég‘fg AL 4Kx5x 6
Input Image Image features .
P & 5 At test-time, sort all K*5*6 boxes
(e.g. 3 x 640 x 480) (e.g.512 x5 x6) by their positive score, take top

300 as our region proposals

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

March 9, 2022
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Faster R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

1. RPN classification: anchor box is
object / not an object

2. RPN regression: predict transform s A o
from anchor box to proposal box proposals/ /
3. Object classification: classify

. . e
proposals as background / object Region Proposal Network /2
oo 4
eature map

4. Object regression: predict transform 1
from proposal box to object box

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 »fml./ 77
Figure copyright 2015, Ross Girshick; reproduced with permission 1 —
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Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed

R-CNN

SPP-Net

Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45
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Faster R-CNN: Learnable Region Proposals
% ﬁ

Faster R-CNN is a
Two-stage object detector

Cla

First stage: Run once per image
Backbone network
Region proposal network

Second stage: Run once per region
Crop features: Rol pool / align
Predict object class
Prediction bbox offset

Cl

SRR S .
dSSITICallOol

loss

regression loss

Bounding-box

Region Proposal Network

feature map

N P
proposa s/ // /

CNN

ding l

booling

Justin Johnson

Lecture 14 - 72
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Dealing with Scale

We need to detect objects of many different scales.
How to improve scale invariance of the detector?

This image is free for commercial
use under the Pixabay license

Justin Johnson Lecture 14 - 73 March 9, 2022


https://pixabay.com/photos/traffic-highway-cars-travel-5623730/
https://pixabay.com/service/license/

Dealing with Scale: Image Pyramid

i | Object
Classic idea: build an . Detector
image pyramid by resizing
the image to different [ object
scales, then process each Detector
image scale independently.
Object
Detector

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017
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Dealing with Scale: Image Pyramid

i | | Object
Classic idea: build an . Detector
image pyramid by resizing
the image to different [ object
scales, then process each Detector
image scale independently.
Problem: Expensive! Don’t
share any computation Object
between scales Detector

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Justin Johnson Lecture 14 - 75 March 9, 2022



Dealing with Scale: Multiscale Features

Stage 5 > 7 x 7 features =—> Object
] Detector
CNNs have multiple stages that
operate at different resolutions. Stage 4 —> 14 x 14 features Dc;’?éifér

Attach an independent detector

to the features at each level Object
Stage 3 =—> 28 x 28 features =—>

Detector
Object
Stage 2 —> 56 X 56 features ——» J
Detector
Stem
Lin et al, “Feature Pyramid Networks 224 x 224 Image

for Object Detection”, ICCV 2017
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Dealing with Scale: Multiscale Features

Stage 5 > 7 x 7 features =—> Object
] Detector
CNNs have multiple stages that
operate at different resolutions. Stage 4 —> 14 x 14 features széifzr

Attach an independent detector

to the features at each level Object
Stage 3 =—> 28 x 28 features =—>

Detector

Problem: detector on early
features doesn’t make use of the Sta
entire backbone; doesn’t get
access to high-level features

Object

Detector

Stgm

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017
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Dealing with Scale: Feature Pyramid Network

Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Zt’é‘zfgr
information from high

level features back down
to lower level features

Stage 4 => 14 x 14 feats

Stage 3 =—> 28 x 28 feats

Stage 2 > 56 x 56 feats

Stem

I

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017
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Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(()el’:(i_i’fgr
information from high 2x upsample

level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOI;)JeEt
to lower level features crector

Stage 3 =—> 28 x 28 feats

Stage 2 > 56 x 56 feats

Stem

I

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017
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Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Zt’é‘zf(t)r
information from high 2x upsample
level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOI;JJeEt
to lower level features crector
2x upsample
Stage 3 => 28 x 28 feats = 1x1 conv Object
Detector

Stage 2 > 56 x 56 feats

Stem

I

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017
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Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Zt’é‘zf(t)r
information from high 2x upsample
level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOI;JJeEt
to lower level features ctector
2x upsample
Stage 3 =» 28 x 28 feats =—»{ 1x1 conv Object
Detector
2x upsample
Stage 2 = 56 x 56 feats =»{ 1x1 conv > Object
Detector
Stem
Lin et al, “Feature Pyramid Networks 224 x 224 Image

for Object Detection”, ICCV 2017
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Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Zt’é‘zf(t)r
information from high 2x upsample
level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOItOJeEt
to lower level features ctector
2x upsample
Stage 3 =» 28 x 28 feats =—»{ 1x1 conv Object
Detector
2x upsample
Stage 2 = 56 x 56 feats =»{ 1x1 conv > Object
Detector
Stem
Lin et al, “Feature Pyramid Networks 224 x 224 Image

for Object Detection”, ICCV 2017
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Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 feats —> D(Zt’é‘zf(t)r
information from high 2x upsample
level features back down Stage 4 | 14 x 14 feats —| 1xd cony DOItOJeEt
to lower level features cector
2x upsample
Stage 3 => 28 x 28 feats = 1x1 conv Object
Detector
2x upsample
Stage 2 = 56 x 56 feats =»{ 1x1 conv > Object
Detector
Stem Faster R-CNN with RPN: Detector at each level
T gets its own RPN to produce proposals; proposals
Lin et al, “Feature Pyramid Networks 224 x 224 Image  from all levels route to a shared second stage
for Object Detection”, ICCV 2017
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Faster R-CNN: Learnable Region Proposals

Cla Bounding [ o)

Question: Do we really *
% P
need the second stage?

Faster R-CNN is a

Two-stage object detector Casseatiof T Soodrete
loss regression l0ss booling
First stage: Run once per image @ ﬁ __P
_ Backbone network p“’posa's/ — 7 /
Region proposal network |
Region Proposal Network
Second stage: Run once per region feature map
Crop features: Rol pool / align
Predict object class
Prediction bbox offset NN l
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Similar to RPN — but rather

Single-Stage Detectors: RetinaNet  thanclassify anchors as

object/no object, directly

Run backbone CNN to get Each feature corresponds predict object category
features aligned to input image to a pointin the input (among C categories) or
5 P 5 P P background
— Anchor
—, classification
Conv 2K*(C+1)x5x 6
Anchor
—
. transforms
e iliNe e e 4Kx5x6
Input Image I
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Justin Johnson Lecture 14 - 85 March 9, 2022



Single-Stage Detectors: RetinaNet

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

Iput Imag |
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Problem: class imbalance —
many more background
anchors vs non-background

— Anchor
—, classification
E 3
Conv 2K*(C+1)x5x 6
Anchor
—p
| transforms
4K x5 x 6

Justin Johnson Lecture 14 - 86

March 9, 2022



Problem: class imbalance —

Single-Stage Detectors: RetingNet  many more background

anchors vs non-background

Run backbone CNN to get Each feature corresponds . _
features aligned to input image to a pointin the input Solution: new loss function
(Focal Loss); see paper
Anchor
—, classification
2K*(C+1)x5x 6
Anchor
—
transforms
BN Tk % ‘ AKX 5x 6
Iput Image | o Image features
CE = —1
(e.g. 3 x640x 480) (e.g. 512 x5x 6) (p) og(p1)

FL(p:) = —(1 — pt)” log(pt)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

class /

subnet
»|| WxH WxH WxH
x256 | x4 %256 XKA

/
class+box i
/ * subnets ,
P
y &

y 4 )e class+box

subnets

- WxH 4--->
bOX X256 x4

subnet /

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017
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Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

38 r
—@- RetinaNet-50
— RetinaNet-101
36 - etinaNet-10
AP time
[A] YOLOvV2T [27] [21.6 25
o 34 - [B] SSD321 [22] 28.0 61
< [C]DSSD321[9] [28.0 85
O [D] R-FCN1 [3] 299 85
8 32+ [E]SSD513[22] [312 125
S [F] DSSD513[9] [33.2 156
[G] FPN FRCN [20]]36.2 172
30 @ RetinaNet-50-500 [32.5 73
RetinaNet-101-500 [34.4 90
RetinaNet-101-800 |37.8 198
28 TNot plotted ¥Extrapolated time
50 100 150 200 250
_ ' | inference time (ms) _ .
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017
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Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

| —‘— RetinaNet-50
36 - n RetmaNgH 01
AP time Faster R-CNN
[A] YOLOvV2T [27] [21.6 25 _
0 34+ [B] SSD321[22] |28.0 61 with Feature
< [C]DSSD321[9] [28.0 85 id
8 [D]R-ECNf [3]  |299 85 Pyrami
S 32 [E] SSD513 [22 31.2 12 Network
<
S0 I :
RetinaNet-101-500 (344 90
RetinaNet-101-800 [37.8 198
28 TNot plotted ¥Extrapolated time
50 100 150 200 250
_ _ | inference time (ms) . -
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017
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“Anchor-free” detector

Single-Stage Detectors: FCOS

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input
\
CNN
/

Input Imag I"rTa\a
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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“Anchor-free” detector

Classify points as positive if

Single-Stage Detectors: FCOS
they fall into a GT box, or

Run backbone CNN to get Each feature corresponds negative if they don’t
features aligned to input image to a pointin the input

Train independent per-
category logistic regressors

T Class scores

—> Cx5x6

B
2

“‘ 1 A \

SR )

AR SRS (5 oA R U b b e P
o 4P

A 1K J v )L

Y L SV TR TR

AN / \# £ LR ol ‘f‘."!"-’ i A4

TN N X B PARK IR 0% ° 8 TN

A b AN 3 g L \ A

T ] L AR 2 % & 3

ot b | o RIN . J \ X, Pl L

Mo { NN L A

3801 A A \ A 4y !

RPN LR A Cied i N R i AL

750 ol EE, ((.‘" " o AR RS IR N A e

PR32 > ML Bl A L " A\ e

& ,'."l'r«z/ A / N Nas ¢ N Lo\ Pe Y4 L e

Input Imag | I"mage .feature.s
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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“Anchor-free” detector

Single-Stage Detectors: FCOS

For positive points, also

Run backbone CNN to get Each feature corresponds regress distance to left, right,
features aligned to input image to a point in the input top, and bottom of ground-
truth box (with L2 loss)

T Class scores

— > Cx5x6
CNN Box edges

— 4x5x6
/

Iput Image Image feature
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

March 9, 2022
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“Anchor-free” detector

Single-Stage Detectors: FCOS
For positive points, also

Run backbone CNN to get Each feature corresponds regress distance to left, right,

features aligned to input image to a point in the input top, and bottom of ground-
truth box (with L2 loss)

T Class scores

> Cx5x6
CNN
| Box edges
A € g e _— > 4x5x6
= — (U ‘,ﬁf PO
A J.*"& \‘\ : o s\['- \ i ﬁj"’ 4s ‘ ‘12 f‘ ! Q 355*
RS LYK SN B AN R AR
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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“Anchor-free” detector

Single-Stage Detectors: FCOS

Run backbone CNN to get Each feature corresponds
features aligned to input image to a pointin the input

Finally, predict “centerness”
for all positive points (using
logistic regression loss)

Class scores
> Cx5x6

Box edges

CNN > 4x5x6
o ‘ : 
Wb - — Centerness
: ' B WD) 7 Wi T PRI TR —
| G\ i P i % ot "é 1x5x6
LRI r R R R
Input Image Image features * [min@R) min(7, B)
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6) Centerness = | ax(L,R) max(T,B)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019 Ranges from 1 at bOX center to O at bOX edge
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“Anchor-free” detector

Test-time: predicted

Single-Stage Detectors: FCOS
“confidence” for the box from

Run backbone CNN to get Each feature corresponds each point is product of its
features aligned to input image to a pointin the input class score and centerness

Class scores
> Cx5x6

Box edges
— 4x5x6

CNN

Centerness
/
— 1x5x6

O
?
04 R TS N o
Y Xl ?L," 3 '.'fti'_»
WA 0 AREN 1N L R
o, RS
P AR AN INNZ U W Qe ’
e AR A v Wl N\ ! 5
G b 4 . . "Ar)_‘ﬂ." o

Input Image Image features min(L,R) min(T, B)
(e.g. 3 x 640 x 480) (e.g.512 x 5 x 6) Centerness = | ax(L,R) max(T,B)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019 Ranges from 1 at bOX center to O at bOX edge

Justin Johnson Lecture 14 - 96 March 9, 2022



“Anchor-free” detector

Single-Stage Detectors: FCOS

FCOS also uses a Feature Pyramid Network with heads shared across stages

Head LU HXWX256  HxWx256

g A28 || 117/ / » Head
a
13x16 /64 / B // »| Head / Classification
4 :' HxWxC i
% ics / | —/ -
25x32 /32 7/ = / »  Head L — [ >ﬁ— q Ce;/‘tf;}x“;ss
| ; x4 L
| 1 | :
1 u ; HxWx256  Hx Wx256 U
C4 | P4 E X WX X WX
50x64 /16 | 3 Head | / Regression
; L1 - Hx Wx4
. | Lol — [ > —>
i R x4 L

C3 P3 |
100x128 /8

800x1024

Shared Heads Between Feature Levels

HxW /s Backbone Feature Pyramid Classification + Center-ness + Regression

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve

Justin Johnson Lecture 14 - 98
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All dog detections sorted by score

Evaluating Object Detectors:

>
Mean Average Precision (mAP) [EE3] I I IEEN
1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = - -

area under Precision vs Recall Curve

1. For each detection (highest score to lowest score) All ground-truth dog boxes
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All dog detections sorted by score

Evaluating Object Detectors:
Mean Average Precision (mAP)

>
m

Match: loU > 0.5

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative

All ground-truth dog boxes
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All dog detections sorted by score

Evaluating Object Detectors:
Mean Average Precision (mAP)

>
m

Match: loU > 0.5

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT Precision =1/1=1.0
2. Otherwise mark it as negative Recall =1/3 =0.33
3. Plot a point on PR Curve L ®

All ground-truth dog boxes

Precision

| | |
|
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -
//// Match: loU > 0.5

1. Run object detector on all test images (with NMS) -

2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT Precision =2/2=1.0
2. Otherwise mark it as negative Recall = 2/3 =0.67
3. Plot a point on PR Curve L O O

All ground-truth dog boxes

Precision

| | |
|
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

No match > 0.5 loU with GT
1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision = 2/3 = 0.67
2. Otherwise mark it as negative Recall = 2/3 =0.67
3. Plot a point on PR Curve L O O
S o
V)
O
L
a
| I I
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

No match > 0.5 loU with GT

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision=2/4=0.5
2. Otherwise mark it as negative Recall = 2/3 =0.67
3. Plot a point on PR Curve L O O
c
kS ®
L
§ O
a
| I I
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors: -

Mean Average Precision (mAP) i 0%
Match: > 0.5 loU /

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,

All ground-truth dog boxes

mark it as positive and eliminate the GT Precision =3/5=0.6
2. Otherwise mark it as negative Recall=3/3=1.0
3. Plot a point on PR Curve L O O
c
kS ®
% ®
S O
| -
o
| | |
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve o
2. Average Precision (AP) = area under PR curve

All ground-truth dog boxes

Precision

Dog AP =0.86

|
|
Recall 1.0
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All dog detections sorted by score

Evaluating Object Detectors:

Mean Average Precision (mAP) m - m - -

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = -
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve o

All ground-truth dog boxes

2. Average Precision (AP) = area under PR curve g
How to get AP = 1.0: Hit all GT §
e vt oo oies |~ | BOBAR 088
above any “true positives” ' Recall ' 1.0
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category

Justin Johnson Lecture 14 - 108

Car AP =0.65

Cat AP =0.80
Dog AP =0.86

MAP@0.5=0.77
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Evaluating Object Detectors:
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5,
mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category
4. For “COCO mAP”: Compute mAP@thresh for each loU
threshold (0.5, 0.55, 0.6, ..., 0.95) and take average
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MAP@0.5 =0.77
MAP@0.55=0.71
MAP@0.60 = 0.65

MAP@0.95 = 0.2

COCO mAP=0.4
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Summary: Beyond Image Classification

Object
Detection

Classification

DOG, DOG, CAT

\— _/
Y

No spatial extent Multiple Objects

This image is CCO public domain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Ssummary

“Slow” R-CNN: Run Fast R-CNN: Apply Faster R-CNN: Single-Stage:
CNN independently differentiable Compute proposals  Fully convolutional

for each region cropping to shared with CNN detector
image features

Bbox || Class Ly p o

Bbox Class Bbox | | Bbox || Bbox | Category and box
CI transform per region
® Conv Forward each
; Regions of
region through Per-Region Network
Conv Net ConvN Interest (Rols) proposals /
Net onviNet
Conv from a proposal Crop + Resize features
Net E Warped image method @Image features Propasal Network
E regions (224x224) '
“Backbone” Run whole image feature
network: through ConvNet
| Regions of AlexNet, VGG, L —
nput Interest (Rol) ResNet, etc ,
image /| _— 4 ,?k‘ £ from a proposal S n / h /
5 method (~2k) = ;/ NS Inputimage e i —

With anchors: RetinaNet
Anchor-Free: FCOS
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Next time:
Image and Instance Segmentation
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