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This work expands previous efforts, within the classical theories of Special and General
Relativity, to include tachyons (faster-than-light particles) along with ordinary (slower-
than-light) particles at any energy. The objective here is to construct a Hamiltonian
that includes both the particles and the gravitational field that they produce. We do
this with a linear approximation for the Einstein field equations; and we also assume
a time-independent gravitational metric implied by a static picture of the particles’
motion. The resulting formulas will allow serious modeling to test the idea that cosmic
background neutrinos may be tachyons, which can produce the observed gravitational
effects now ascribed to some mysterious Dark Matter.
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1. Introduction

Some readers may wish to start with App. A.

In earlier work,1–4 I have explored, theoretically, how tachyons (faster-than-

light particles) would behave in Einstein’s General Relativity. That starts with the

recognition that low energy tachyons would have very large velocities and thus their

contribution to the energy–momentum tensor T ij would be very large. That leads

to the physical idea that neutrinos, which are so numerous throughout the universe,

might be tachyons with a mass of around 0.1 eV and could thus produce gravita-

tional effects that are now ascribed to mysterious sources called “Dark Matter” or

“Dark Energy.”

The simplest calculation, based upon an unexpected minus sign in front of T ij,

gave a numerical estimate of the negative pressure that such tachyon-neutrinos

would produce in the Robertson–Walker model of the universe that “explained”
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Dark Energy within a factor of 2!3,4

The more difficult calculation surrounds the idea that attractive gravitational

forces among low energy tachyons could lead to their forming stable configura-

tions (while all the time flowing at speeds far above the speed of light) that could

attach themselves to galaxies and thus produce the local gravitational fields that

are commonly ascribed to Dark Matter.1 This paper is about that challenging idea.

For a nonrelativistic classical particle moving in a time-independent conserved

force field, we have the familiar equation, expressing the conservation of energy:

E =
1

2
mv2 + V (x) , (1.1)

and for a collection of such particles interacting via Newtonian gravity, we write

the Hamiltonian

H =
∑

a

1

2
mav

2
a −

∑

a<b

Gmamb

rab
, rab = |xa − xb| . (1.2)

The main purpose of this paper is to generalize this Hamiltonian to the case

of relativistic matter, including both ordinary particles (v < c = 1) and tachyons

(v > c = 1), under Einstein’s General Theory of Relativity, with two restrictions:

that we use the linearized approximation to Einstein’s equation; and that we assume

the metric gµν(x) to be independent of the time. The result given in Sec. 7, for a

system of ordinary particles and tachyons at low (or intermediate) energies, is

Formula 1: H = −
∑

a

ωaEa −
∑

a,b

GωaEaωbEb

rab
Zab ,

Zab = 2− 4va · vb + v2a + v2b −
[

ǫaγ
2
a + ǫbγ

2
b + 1

]

×
[

(1− va · vb)
2 −

(

1

2

)

(

1− v2a
)(

1− v2b
)

]

.

(1.3)

Here, E =
√

p2 ±m2 = mγ = m/
√

|1− v2|; and the factors ǫ, ω are ±1 and will be

defined later. The expression Zab contain all the details of the velocity-dependent

interactions.

For other energy ranges, we also give two additional formulas.

The idea of the metric being static while the particles producing that gravi-

tational field are moving may seem contradictory. We imagine a continuous flow

of particles that does not change in time, analogous to the picture of a constant

electrical current used in the study of magnetostatics. One might use the term

Gravito-statics for this study. (But that name has been used for a different sort of

theory: see Ref. 5.)

There is also mathematical work on the static Einstein–Vlasov system6 which

uses a kinetic theory approach for many-particle systems in General Relativity;

but that does not consider the possibility of tachyons. Therefore I shall begin from

scratch.
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Moreover, the large body of work on the Einstein–Vlasov equations (see re-

ferences in Ref. 6) is focused on the equations of motion and the mathematical

question of the existence of solutions. That work has not been productive in looking

at the stability of such solutions. By contrast, my Hamiltonian formalism leads

readily to such analyses from a physical perspective; and in the latter part of Sec. 7,

I do draw a number of provocative suggestions about how these models may lead

to new physical insights. In particular, these new equations lead me to discard,

as clearly unstable, my original notion1 of tachyons grouping into long ropes held

together by their mutual gravity.

With this formula (1.3), we can begin model-building, looking for potentially

stable configurations of tachyon flows contained by their mutual gravity. That will

be an ongoing task. That requirement of stability will be the most challenging. Even

with ordinary Newtonian gravity (1.2) one sees large scale attraction that seems to

lead inevitably to physical collapse; but then one brings in further physics to help

us explain the observable stability of stars, solar systems, galaxies. Our new ideas

are about incorporating tachyons (neutrinos?) into that cosmic modeling; and it

needs to start with something better than (1.2): thus our new formula (1.3).

2. Beginning

Here, I review previous work describing both ordinary particles (v < c) and tachyons

(v > c) as classical particles in both Special and General Relativity. First, some

notation and equations in common for all particles.

A “worldline” ξµ(τ) = (t(τ),x(τ)) maps the trajectory of the particle in space

and time with some as yet undefined scalar parameter τ . I use notation µ = (0, i),

i = 1, 2, 3 and set the velocity of light c = 1; and use the overhead dot notation

to represent d/dτ . The argument x is meant to stand for all four space–time coor-

dinates xµ = (t,x), where x = (x1, x2, x3); and partial derivatives are written as

∂µ = ∂
∂xµ .

We write a conserved current density as

jµ(x) =

∫

dτ ξ̇µ(τ)δ4(x− ξ(τ)) , (2.1)

jµ,µ(x) = ∂µj
µ(x) =

∫

dτ ξ̇µ(τ)∂µδ
4(x− ξ(τ)) (2.2)

= −
∫

dτ
dξµ

dτ

d

dξµ
δ4(x− ξ(τ))

= −
∫

dτ
d

dτ
δ4(x− ξ(τ)) = 0 . (2.3)

All that we required for that last step was to take the end points of the τ integral

far away from the place where the particle is at this location x.
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We can also write an energy–momentum tensor,

T µν(x) = m

∫

dτ ξ̇µ(τ)ξ̇ν (τ)δ4(x− ξ(τ)) . (2.4)

When we take the divergence on one index, we follow the above calculation but get

something left over from the final partial integration

T µν
,µ(x) = −m

∫

dτ ξ̇ν
d

dτ
δ4(x− ξ(τ)) = m

∫

dτ ξ̈νδ4(x− ξ(τ)) . (2.5)

If the only forces acting upon the particle are those due to gravity, then we also

have the geodesic equation (equally correct for ordinary particles or tachyons):

ξ̈ν + Γν
αβ ξ̇

αξ̇β = 0 , (2.6)

involving the Christoffel symbols Γν
αβ , defined in terms of derivatives of the metric

tensor gµν(x), evaluated at the point where the particle is at any given value of τ .

This lets us write the result of the ordinary divergence calculation as

T µν
,µ + Γν

αβT
αβ = 0 . (2.7)

From this result, we can construct a modified tensor, multiplied by the square root

of the determinant of the metric, which will have zero as its covariant divergence

T µν =
√

| det(g)|T µν , T µν
;µ = T µν

,µ + Γµ
αµT να + Γν

αµT αµ = 0 . (2.8)

That is proper for the full Einstein equation; but here we will be satisfied with

the linear approximation

gµν = ηµν + hµν − 1

2
ηµνh , h = ηµνhµν , ∂µhµν = 0 , (2.9)

∂α∂αhµν(x) =
[

∂2
t −∇ · ∇

]

hµν(x) = −16πGTµν(x) , (2.10)

with the Minkowski metric ηµν = δµν(+1,−1,−1,−1) used to raise and lower

indices.

3. Free Particles

First, we sit in a flat space–time. There should be nothing new here; we want to

practice for later. At any point in the (ordinary) particle’s trajectory, where it

happens to have a velocity v in the original reference frame we can make a Lorentz

transformation to a local frame where the particle is seen momentarily at rest (in

the rest frame: v′ = 0). This Lorentz transformation has a velocity vLT = v and

the gamma factor γLT = 1/
√
1− v2. We take the scalar parameter for this particle

to be the time in that local rest frame: dτ = dt′ = dt/γLT. This γLT is exactly the

γ of the particle at that point of its trajectory in the original frame. Thus, we can

write

ξ̇µ = (γ, γv) , v =
dx

dt
. (3.1)
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This leads to, with the Minkowski metric,

ξ̇µξ̇νηµν = γ2(1− v2) = +1 , (3.2)

which is fine for a free particle; but in a gravitational field it should be the entire

metric gµν that fills this role. The geodesic equation implies that ξ̇µξ̇νgµν is a

constant along the particle’s trajectory.

But let us stay in Minkowski space, no gravity, for a while and look at the

comparable calculation for tachyons. Now, we have no rest frame to give us a nice

definition of the scalar parameter τ . So we find another special frame of reference:

one where the tachyon has infinite velocity. (This is the one used in quantum group

theory to find the “Little Group” for tachyons.) This involves a velocity of the

Lorentz transformation, vLT = 1/v, where this v is the tachyon’s velocity (v > 1)

in the original reference frame. (To see this, recall the velocity addition formula

v′ = (v + vLT)/(1 − vvLT).) The gamma for this Lorentz transformation is γLT =

1/
√

(1 − v−2). We now make the definition of the scalar parameter as dτ = v̂ · dx′,

marking the path of the infinitely fast particle. Here, dx′ is the differential of the

spatial coordinate in this special reference frame, which is related to that in the

original frame by v̂ · dx′ = γ−1
LT v̂ · dx. So we have for tachyons, in the original

reference frame,

dτ = (vγ)−1v̂ · dx , γ =
1

√

(v2 − 1)
, ξ̇µ = γ(1,v) , (3.3)

where that last equation is what we expected.

For ordinary particles of extremely low velocities, we had dτ ≈ dt; for tachyons

of extremely high velocities we have dτ ≈ v̂ · dx. This is nice.
Now, let us look at how these results influence our physical interpretation of the

conserved currents. For ordinary particles,

jµ =

∫

dτ(γ, γv)δ(t− γτ)δ3(x− γvτ) = (γ, γv)γ−1δ3(x− vt) , (3.4)

where I have used the first delta-function to do the integral over τ . If we now do

the standard integral over all space, we get a very simple answer,
∫

d3xj0 = 1 . (3.5)

This says we have one particle there (somewhere in space) at any time.

The analogous calculation for a tachyon goes like this

jµ =

∫

dτ γ(1,v)δ(t− γτ)δ2(x⊥)δ(x‖ − γvτ) , (3.6)

where the parallel and perpendicular subscripts refer to the direction of the velocity.

Now I do the integration over τ using the last delta-function to get,

jµ = (1,v)
1

v
δ
(

t− x‖/v
)

δ2(x⊥) . (3.7)
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To get the count of “one particle” from this, I integrate the component of j parallel

to the velocity over the transverse plane and integrate over time
∫

dt

∫

d2x⊥v̂ · j = 1 . (3.8)

We recite this conservation law as: We have one particle passing through a trans-

verse plane at some time — and this could be any transverse plane. This is com-

pletely consonant with my earlier writings about tachyon kinematics.

Suppose I try to treat the tachyon as I did the ordinary particle. I still go to

the frame where the tachyon is at v′ = ∞ but I choose to define dτ = dt′ in that

frame. I again write dt′ = dt/γLT but remember that γLT = 1/
√

(1 − 1/v2) = vγ,

where this last is the usual gamma for the tachyon in the original reference frame.

This gives us ξ̇µ = γv(1,v). We now calculate the current, as before,

jµ =

∫

dτ vγ(1,v)δ(t− vγτ)δ3(x− vγvτ) = (1,v)δ3(x− vt) , (3.9)

integrating over τ by using the first delta-function. This looks just like the case

with ordinary particles. We are tempted to integrate over d3x and say that we have

one particle in a large box at any time — just as we did for ordinary particles.

However, this is really not acceptable for tachyons: the velocity v occurs in that

delta-function δ(x−vt) and that velocity can be arbitrarily large. Thus, given any

finite “box” over which we do the
∫

d3x at time t1 there may be tachyons that will

be located out of that box at time t2. (This cannot happen for ordinary particles.)

We conclude, as in earlier writings, that the first method of treating tachyons —

using space displacement to define the parameter τ — is the correct one for them.

What if we take this second version of jµ for tachyons and integrate it as we

did for the first version
∫

dt

∫

d2x⊥ v̂ · j = v

∫

dt δ(x‖ − vt) = 1 , (3.10)

which looks nice.

We can apply the same analysis to the energy–momentum tensor: just add the

factor mξ̇ν to the results above for jµ

T µν = mγ(1,v)(1,v)δ3(x− vt) , (3.11)

or

T µν = mγ(1,v)(1,v)v−1δ
(

t− x‖/v
)

δ2(x⊥) , (3.12)

for the ordinary particle or tachyon, respectively.

4. Lagrangian/Hamiltonian Formalism

Textbooks show how to write a Lagrangian and a Hamiltonian for a single rela-

tivistic (ordinary) particle; but then say that one cannot make this “manifestly
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covariant” for many-particle systems because each individual particle’s dτ is in-

dependent of the others’. Traditional Lagrangian formalism involves particles and

fields but all described on a common space–time manifold. When we come to add

gravitation, there is the familiar caveat that “Energy” is not well defined in Ein-

stein’s theory, at least because there are possible gravitational waves that need to

be attended to; but that need not bother us here. There is also a sophisticated

literature about the “positive energy theorem” in general relativity;7 but that work

explicitly requires T00 ≥ 0 everywhere in each local Lorentz frame and that would

prohibit our inclusion of tachyons.

Our objective here is to study a “static” physical system of particles — both

ordinary and tachyons — with gravitational interaction, derived from Einstein’s

equation. By the word “static” we mean that the particles are moving, but their

pattern of flow does not change with time. This should imply that the gravitational

field they produce — via the metric gµν(x) — is independent of the time. But this

must mean that we are restricting ourselves to one (or a particular set of) Lorentz

frames. If any field is independent of time (but varying with spatial position) in one

reference frame, a Lorentz transformation that takes us to a frame moving relative

to the original frame will show the field (at any place) as varying with time. So, our

final analysis will be done in a particular Lorentz frame: and this is ok. Nevertheless,

we want to start with a generally invariant/covariant formalism, and specialize to

the static case later.

I want to be especially careful about minus signs here. Start with one particle:

L =

∫

d3xL , L = ζm

∫

dτ

√

ξ̇µ(τ)ξ̇ν (τ)ǫηµν δ
4(x− ξ(τ)) , (4.1)

L = ζm

∫

dτ

√

ξ̇µ(τ)ξ̇ν (τ)ǫηµν δ(t− ξ0(τ)) . (4.2)

Here, the dot means derivative with respect to τ , ηµν is the Minkowski metric;

ǫ = ±1 distinguishes ordinary particles from tachyons; and ζ is another ±1 factor

that we will have to argue about later on. We now use the remaining delta-function

to eliminate the integral over τ — and this leaves us with a factor |ξ̇0|−1. We now

write,

ξ̇µ =

(

dt

dτ
,
dx

dτ

)

= ξ̇0(1,v) , v =
dx

dt
. (4.3)

and this yields,

L = ζm
√

ǫ(1− v2) . (4.4)

This is for all species of particles, ordinary or tachyon.

We then proceed with the “canonical” formalism,

pi =
∂L

∂vi
= ζǫm(−vi)γ , γ =

1
√

ǫ(1− v2)
, H = piv

i − L = −ζǫmγ . (4.5)
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For ordinary particles (ǫ = +1) at low velocities this gives,

H = −ζ(mc2 + 1/2mv2 + · · · ) . (4.6)

Thus it is conventional to choose ζ = −1. For tachyons (ǫ = −1), we have

H = +ζmγ . (4.7)

It is tempting to choose ζ = +1 but maybe we should wait to see about this sign.

The final step in going from Lagrangian to Hamiltonian is to eliminate the

velocity variable v in favor of the momentum variable p. From Eq. (4.5), we calculate

p2 ≡
∑

i

(pi)
2 = m2v2γ2 , H = −ζǫmγ = −ζǫ

√

p2 + ǫm2 , (4.8)

which looks very familiar.

For many particles, labeled with the subscript “a”, we now write the Lagrangian

density for all this matter, in the presence of a gravitational field as follows:

LM (x) =
∑

a

ζama

∫

dτa

√

ξ̇µa (τa)ξ̇νa (τa)ǫagµν(x)δ
4(x − ξa(τa)) , (4.9)

and, following the method used above for each particle’s coordinates:

LM =
∑

a

ζama

√

ǫagµν(xa)v
µ
avνa , (4.10)

where vµa = (1,va) = (1, dxa/dt). What we have here, for the physical problem

posed in Sec. 1, is an expression where the metric gµν does not depend explicitly on

the time t; it does depend on the coordinates of the particle xa in each term, and

those coordinates do depend on the time t. The particle velocities va also depend

implicitly on the time t. So we can do conventional steps of Lagrangian analysis,

as follows:

paµ =
∂LM

∂vµa
=

ζamaǫagµν(xa)v
ν
a

√

ǫagµν(xa)v
µ
a vνa

. (4.11)

Since we have defined v0 = 1 this equation should be read only for µ = i = 1, 2, 3 in

terms of Lagrangian formalism. However, as we shall see below, this may be read as

a generally covariant definition of momentum. We also have the geodesic equation

for each individual particle,

ξ̈µa + Γµ
αβ ξ̇

α
a ξ̇

β
a = 0 , (4.12)

which comes from varying each worldline ξa(τa) in the action made with this Lagran-

gian density (4.9) in the most general case. (This geodesic equation does not involve

the factors ζ, ǫ.) From this geodesic equation we have, in the general case, the

integral,

gµν(x = ξa(τa))ξ̇
µ
a ξ̇

ν
a = const = ǫaκ

2
a . (4.13)
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Here, I put in the factor ǫa = ±1 to distinguish the two species of particles we

study; and I also put in some constants κa. As usual, we make these constants κa

equal to 1 by scaling the previously arbitrary parameters τa.

With the above information, we now calculate the Hamiltonian for these

particles,

HM =
∑

a

pa iv
i
a − LM = −

∑

a

pa 0 . (4.14)

For any situation where the metric g is independent of the time, there is a textbook

proof8 that the time component of the covariant momentum pa 0 is constant along

the particle’s worldline. So what we have here is independent of the time.

For any individual particle, using the definition pµ = mξ̇µ together with pre-

vious formulas in this section, we can write pµ = ζǫgµνp
ν . Except for the factors

ζ, ǫ this formula conforms with the standard relation between “covariant” and

“contravariant” 4-vectors.

The next task is to rewrite the general formula (4.14) in a more useful way. We

do this in the following section.

5. Expanding the Particle Hamiltonian

In nonrelativistic physics, we write the Hamiltonian as H = KE+PE and say that

it is time independent. In General Relativity, as treated in this study, we do have

an expression for the Hamiltonian, a constant of the motion, but we need to figure

out how to separate it into those two parts called Kinetic Energy and Potential

Energy. The linear approximation to Einstein’s equations for the metric will be our

guide.

We will write gµν = ηµν + λµν , where η is of order zero in the gravitational

constant G and λ is first order in G. It would seem that our task is merely to

expand the particle Hamiltonian, given in Sec. 4, in this same way: the KE. part

will be zeroth-order in G (i.e. the energy of a free particle) and the PE part will be

everything first-order in G. But is this a clear definition? There are other variables

that occur: there are spatial coordinates x and velocities v and momenta pi and pi.

How are these to be grouped?

We find, below, that seeking this expansion in G may take different paths,

depending on the range of energies (velocities) of the particle.

We have the defining equation, for one particle of any species,

p0 = ζǫm(g00 + g0iv
i)Γ , Γ ≡

[

ǫvµvνgµν
]−1/2

, (5.1)

Γ2 =
ǫ

[

1− v2 + Λ
] , Λ ≡ λ00 + 2λ0iv

i + λijv
iv j . (5.2)

This Γ is not the Christoffel symbol. For G = 0, Γ = γ = 1/
√

ǫ(1− v2).

Now, I am ready to make an expansion, since Λ ∼ O(G). But this requires me

to say something about the magnitude of γ. For what I will call Formula 1, it is
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assumed that γ is not much bigger than 1; that means that v is not close to 1

Formula 1: Γ ≈ γ

[

1−
(

1

2

)

ǫγ2Λ

]

, (5.3)

p0 ≈ ζǫmγ

[

1 + λ00 + λ0iv
i −

(

1

2

)

ǫγ2Λ

]

. (5.4)

This is the formula, I gave in the first version of this paper.10 It should be good for

ordinary particles and for tachyons at low energies and also perhaps for energies

up to some modest multiple of their mass. In that earlier paper, I was incautious

about using this formula and made some ill-considered attempt to interpret it at

high energies. If one looks at the expression (5.2) for Γ one sees that there is some

very bad behavior as one approaches v = 1: the function is not analytic because

of the factor ǫ, which changes from +1 to −1 as one crosses from v < 1 to v > 1.

Now, we know to use this formula only for low energy particles.

For many particles, we put subscripts “a” on all the particle variables and sum

them. In the nonrelativistic limit for ordinary particles this becomes,

HM →
∑

a

maγa

[

1 +

(

1

2

)

λ00

]

=
∑

a

ma

(

1 +

(

1

2

)

v2a

)

−
∑

a,b

Gmamb

rab
, (5.5)

where I have taken the formula for λ00 derived in the next section. This looks nice;

but it is not quite right. The potential energy for this system should count each

pair of particles only once and this formula has an excess factor of 2 in the PE.

This will be corrected when we add in the Hamiltonian for the field.

Another way of characterizing the above approach is to say that we have used

only the velocities, and not the momenta, in identifying the KE part. Now, we

explore the alternatives.

I want to look at the momentum variables in the fully relativistic formulation.

We have, in general, the metric gµν providing the relation between the covariant

and contravariant forms, along with the overall constant of motion derived from

the geodesic equations:

pµ = gµνp
ν , gµνp

µpν = ǫm2 , (5.6)

where I have temporarily dropped the phase factor ω = ζǫ seen earlier. In order to

further simplify this examination, I will also take the metric to be strictly static:

g0i = 0.9

I can now write,

g00(p
0)2 + gijp

ip j = ǫm2 , p0 = g00p
0 , (5.7)

p0 =
√

[ǫm2 − gijpip j]g00 . (5.8)

Next, we start the expansion of the metric g = η + λ + O(G2) where η is the

Minkowski metric. This leads to

p0 =
√

[

(E∗)2 − λijpip j
]

(1 + λ00) , E∗ ≡
√

pipi + ǫm2 . (5.9)
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An alternative is to start with the covariant momenta,

gµνpµpν = ǫm2 , (5.10)

g00(p0)
2 + gijpipj = ǫm2 , (5.11)

p0 =

√

[ǫm2 − gijpipj ]

g00
. (5.12)

Since the matrix gµν is the inverse of the matrix gµν we have to first order (and

with the simplification of g0i = 0): g00 = 1− λ00, g
ij = −δij − λij . This leads to

p0 =

√

(

E2
∗ + λijpipj

)

(1− λ00)
, E∗ ≡

√

pipi + ǫm2 . (5.13)

Comparing the two equations (5.9) and (5.13), we see a sharp difference: the

sign of the λij term is changed. If we make expansion to first order in λ, we see two

equations that look rather different. We take these as Formulas 2 and 3

Formula 2: p0 ≈ E∗ + E
[

λ00 − λijv
iv j

]

/2 , (5.14)

Formula 3: p0 ≈ E∗ + E
[

λ00 + λijv
iv j

]

/2 . (5.15)

Here, I have set E∗ = E∗ = E when multiplying the (first order small) quantity

λ; and I also wrote p/E = v for both cases in the same circumstance. These two

formulas are two different ways of expressing the same quantity, p0. Formula 2 is

exactly what I put forward as the primary solution in the second version of this

paper.10 My error there was to also look at this formula for low energy tachyons;

but now we see that these two formulas should not be used for low energy tachyons

(E → 0).

Let us remember, the momenta involved in these two expressions are different

and thus E∗ and E∗ are also different. Both the covariant and the contravariant

momenta depend on the gravitational field: pi = mΓvi, and pi = −pi+λijp
j . Thus

pipi = pipi−2λijp
ip j; and we see that the two formulas for p0 are actually identical.

But this still leaves us with the challenge of deciding which one to use. At least we

can say that these last 2 formulas should not be used for low energy tachyons; this is

because E → 0 would prevent us from expanding the above square root expressions

in the way we have done. In the case of low energy ordinary particles v → 0, these

two formulas are the same; and in fact they are the same as Formula 1.

Our goal was to separate this particle Hamiltonian, which is given by p0, into

a KE part and a PE part. We wanted to say that the KE term is zeroth order in

G and the PE term (involving λ) is first order in G. Thus, which formula we start

with is an important choice as we expand to first order in G. However, we now

recognize that introducing the momenta and using them to define the free particle

energy E (as E∗ or E∗) will involve some G dependence in the KE term. This also

incorporates the spatial coordinates x in the KE. Is this bad or not?
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Canonical formalism (Lagrangian/Hamiltonian) would lead us to use momen-

tum variables throughout the Hamiltonian; in particular we have noted that the

covariant momenta are the canonical variables for our system. Is this a rule we need

to follow?

Given these open questions, we nevertheless proceed to see what we have.

In the following sections, we shall first derive formulas for the λ’s and then go

on to assemble the complete Hamiltonian, for particles and for the gravitational

field, under each of the three formulations given above.

6. Gravitational Field

Now, we write that part of the Lagrangian that describes the gravitational field.

I am now limiting this part to the Linear approximation to Einstein’s full theory

of General Relativity

gµν(x) = ηµν + hµν(x)−
1

2
ηµνh+O(G2) = ηµν + λµν(x) +O(G2) , (6.1)

where hµν is first order in G and h = ηµνhµν ; and henceforward we use the

Minkowski metric ηµν to raise and lower indices.

The equation of motion (Einstein’s theory in the linear approximation) is,

∂α∂αhµν(x) = −16πGTµν(x) , (6.2)

∂α∂αλµν(x) = −16πG

[

Tµν(x)−
1

2
ηµνT (x)

]

, (6.3)

with the gauge condition ∂µhµν = 0.

Let me try the following construction, which is first order in G:

LG =
1

64πG

[

(∂αλµν)(∂αλµν)−
1

2
(∂αλ)(∂αλ)

]

, (6.4)

where λ = ηµνλµν . When we go through variation of the action it will involve partial

integrations over time and space. We assume that the deviations of the metric from

the Minkowski form are contained in space, so there should be no surface terms

from the partial integration over space. Regarding integration over time, the usual

action rules say that there is no variation at the time endpoints, whatever they

may be

∫

d4x
∂LG

∂gµν(x)
=

∫

d4x
−1

32πG

[

∂α∂αλ
µν(x)− 1

2
ηµν∂α∂αλ

]

; (6.5)

using the matter Lagrangian density from the previous section, we have

∂LM

∂gµν(x)
=

∑

a

ζaǫa
2

ma

∫

dτa ξ̇
µ
a ξ̇

ν
aδ

4(x− ξa(τa)) =
−1

2
T µν(x) . (6.6)
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This defines the energy–momentum tensor T µν(x). Thus, we have the complete

Lagrangian density, L = LM + LG giving us the correct equations of motion (6.3)

upon variation of the metric. Now, we calculate the Hamiltonian for this entire

system of particles and (linearized) gravitational field, adding (4.14)

H = HM +HG = −
∑

a

pa 0 +
1

64πG

∫

d3x

[

(∂αλ
µν)(∂αλµν )−

1

2
(∂αλ)(∂αλ)

]

,

(6.7)

where that second term has no longer the Lorentz invariant ∂α · · · ∂α but what looks

like a Euclidean sum.

Let us explore this result. For any set of fields ϕb(x) in three-dimensional Eucli-

dean space that are produced by localized source densities ρb(x), we have

△ϕb = ∂i∂iϕb = −4πρb , ϕb(x) =

∫

d3x′ ρb(x
′)

|x− x′| ∼
Mb

r
, (6.8)

1

4π

∫

d3x(∂iϕb)(∂iϕc) =

∫

d3x

∫

d3x′ ρb(x)ρc(x
′)

|x− x′| , (6.9)

where the ∼ means at a large distance r from the source. Thus, we have for the

gravitational field part of the Hamiltonian, setting ∂tλ
µν = 0,

HG = G

∫

d3x

∫

d3x′ 1

|x− x′|

[

T µν(x)Tµν(x
′)− 1

2
T (x)T (x′)

]

. (6.10)

Putting in the earlier formula for the source T :

HG =
∑

a,b

G(ζaǫamaγa)(ζbǫbmbγb)

rab

[

(1− va · vb)
2 − 1

2

(

1− v2a
)(

1− v2b
)

]

. (6.11)

For future use we have from (6.3) and (6.6),

λµν(x) = 4G
∑

b

ωbmbγb
|x− xb|

[

vµb v
ν
b − 1

2
ηµν

(

1− v2b
)

]

, (6.12)

where ω = ζǫ for each particle.

If I look at the nonrelativistic limit, va → 0, this term becomes

HG → 1

2

∑

a

∑

b

Gmamb

rab
, (6.13)

which looks familiar. In the very high energy limit, va → 1, we see

HG →
∑

a,b

G(ωamaγa)(ωbmbγb)

rab
(1− cos θab)

2 , (6.14)

where θab is the angle between the two velocity vectors. For low energy tachyons

we have another limit, va → ∞

HG →
∑

a

∑

b

Gmamb

rab
ζaζbvavb

(

cos2 θab −
1

2

)

. (6.15)
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This formula is not familiar; but one may want to compare it to the expression for

the energy of the magnetic field produce by a spatial distribution of static electric

currents. Note that the velocities may vary with spatial position of the particles,

so this calculation is not as simple as it may look.

7. Assembling the Final Formulas

Now, we will use the formulas (6.12) for λµν from the last section, insert them into

the particle Hamiltonian formulas — three versions of that – from Sec. 5, and then

add the Hamiltonian for the gravitational field itself (6.11). For the Kinetic Energy, I

will use various definitions of the free particle energies:E = mγ, E∗ =
√

pipi + ǫm2,

or E∗ =
√

pipi + ǫm2. The Potential Energy terms are the real focus of interest, and

we will write them in terms of the Energy E and the velocity v. As noted earlier,

I write the ±1 factors as ωa = ζaǫa, where the labels a, b identify the individual

particles.

First, using Formula 1, which is reliable for particles of low energy (and may be

moderate energy) of both species, ordinary (ǫ = +1) and tachyon (ǫ = −1), we get

Formula 1: H = HM +HG = −
∑

a

ωaEa −
∑

a,b

GωaEaωbEb

rab
Zab , (7.1)

Zab = 2− 4va · vb + v2a + v2b −
[

ǫaγ
2
a + ǫbγ

2
b + 1

]

×
[

(1− va · vb)
2 −

(

1

2

)

(

1− v2a
)(

1− v2b
)

]

, (7.2)

and here are several interesting subcases to be noted.

For all low energy ordinary particles v′s → 0, Zab → 1/2 and we have the

Newtonian formula (1.2). We noted earlier that all three Formulations lead to this

result.

For all low energy tachyons, v′s ≫ 1,

Zab → v2av
2
b

(

1/2− cos2 θab
)

, (7.3)

where θab is the angle between those two velocity vectors. It is noteworthy that

this result comes entirely from HG. In my first work,1 I proposed that low energy

tachyons could be attracted to one another in a rope-like structure. But this formula

says NO to that model. Comoving particles means that, on average, θab is close to

zero. Thus this Zab is negative and the potential energy is seen as positive, increasing

at small distances. We interpret that as a repulsive, not an attractive, force.

Another model would imagine a gas-like dispersion of the tachyons. With all

directions of motion equally populated we have 〈cos2 θ〉 = 1/3 and 〈Zab〉 is thus

positive. This implies an attractive force between same-type tachyons, that is for

ζa = ζb; but a repulsive force between opposite-type tachyons, ζa = −ζb. This

suggest some very provocative physics about tachyon neutrinos in the cosmos.
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In Ref. 4, I showed that the energy–momentum tensor for tachyon neutrinos should

have a sign that changes with the helicity of the particles. That is what the factor

ζ is for.

Still more model possibilities need to be explored. That will be later work.

We can also use this formula (7.2) to look at low energy tachyons interacting

with low energy ordinary particles. Here, we are looking at one velocity va going to

zero and the other velocity vb going to infinity. There will be two contributions from

the particles: and when we add (6.11) for the field, again two terms. The interaction

potential has the form (7.1) with,

Zab → 3− 4(v2av
2
b )(cos

2 θab − 1/2) . (7.4)

This is a rather weak potential: there are terms of order v2b in both HM and HG,

but they cancel out. The sign of Zab depends on the details of angular dependence

and the relative magnitudes of the two velocities. This may be interesting in looking

at a region of evolution of the universe with temperatures far below the mass of

ordinary matter but not yet far below the mass of tachyon-neutrinos. If we thus

take vavb ≪ 1, then Zab is positive. Alternatively, if we average over the angles,

then Zab is again positive regardless of the relative magnitude of velocities. But the

sign of the overall interaction will depend on ζb. If ζb = +1, then we would call this

an attractive force; but that is not the choice for ζ that gives us the explanation

of Dark Energy.3 This may be relevant for a model of Dark Matter that posits a

gas of tachyon neutrinos attracted to ordinary matter in galaxies. More study is

needed here.

Now, we turn to Formulas 2 and 3 from Sec. 5. These should be reliable away

from the region of low energy tachyons, i.e. E not near zero

Formula 2: H = HM +HG = −
∑

a

ωaE
∗
a −

∑ GωaEaωbEb

rab
Yab , (7.5)

Yab = 1/2−
(

v2a + v2b
)

/2− 3v2av
2
b

(

cos2 θab − 1/2
)

; (7.6)

Formula 3: H = HM +HG = −
∑

a

ωa(E∗)a −
∑ GωaEaωbEb

rab
Xab , (7.7)

Xab = 1/2 +
(

v2a + v2b
)

/2 + v2av
2
b

(

cos2 θab − 1/2
)

. (7.8)

Here, I have dropped terms va ·vb from HG to be consistent with the simplification

g0i = 0 used for Formulas 2 and 3.

Averaging over angles 〈Yab〉 =
(

1 − v2a
)(

1 − v2b
)

/2, 〈Xab〉 =
(

1 + v2a + v2b −
v2av

2
b/3

)

/2. How these later two formulas may be useful is for later study. For high

energy particles, v → 1, both of these formulas give positive values, which is reassur-

ing. The formula for 〈Y 〉 looks most reasonable, with the factors (1− v2) damping

down the strength of the interaction as one goes to high energies. On the other

hand, Formula 3 is the one that adheres to the canonical formalism.
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8. Conclusions

This paper has gone through three different formulations. I should explain this.

The initial motive was to find some formulation of the gravitational dynamics

for a large collection of tachyons, particularly at low energies, E ≪ m, where

we expected they would produce unusually strong gravitational fields that would

have significant physical effects observable in cosmological studies. Constructing a

Hamiltonian for such a system, many relativistic particles plus their gravitational

field, seemed like the way to go.

In nonrelativistic dynamics we are used to writing H = KE+PE with the first

term depending only on v (or p, which is a function of v), while the second term

depends only on x. We know how to “read” the PE and say whether the force will

be attractive or repulsive. An attractive force might or might not lead to bound

states; a repulsive force would surely allow only scattering states. That is what I

had hoped to do here, with tachyons and with Einstein’s General Relativity. But

this — even with our special assumption of a static metric — turns out to involve

a much messier mixing of spatial coordinates and velocities. This led to my earlier

blunders, noted in Sec. 5, which I was directed to restudy upon receiving sharp

questioning from this journal’s (anonymous) reviewer.

In this third version, I explore three different approaches and serve up three

different Formulas, with the following strict rules: Formula 1 is best used only for

low energy particles. Formulas 2 and 3 should not be used for low energy tachyons.

With the general formulas and various specialized forms, as presented in the

last section, one may start the hard work of trying to build models of tachyon flows

that are stable and confined and may contribute effectively to the proposition that

neutrinos-as-tachyons may explain the observed phenomena now ascribed to Dark

Matter. There are also provocative hints about how a gas of tachyons may interact

gravitationally; and this will be especially worth studying if the search for confined

tachyons should fail.

The one sharp conclusion from this work is the rejection of my original1 model

of low energy tachyons being attracted to one another in a rope-like structure.

I will save my own further modeling for a separate paper, while offering the

above mathematical tools for others to explore independently.

As a bit of self-criticism, I offer the thought that the static model, upon which

this paper is based, may be very questionable for the high energy situations con-

sidered in cosmology, although I have blithely ventured into that domain above.

Perhaps, as an alternative to the assumption of “static flows,” one may be able to

invoke the idea of “time averaging” in order to justify using a static metric. Also,

in Sec. 6, I did some partial integrations and ignored any surface terms on the

assumption of a localized source; but then in Sec. 7, I also considered an extensive

gas of particles as the source. Perhaps this is fixable.

Overall, I am disappointed that I could not find a single formula for the Hamil-

tonian that is valid for all energies of the particles. Nevertheless, what has been

presented here should be useful tools as one goes on to explore specific models.
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Appendix A. Debunking the Antitachyon Myths

Some people believe that the Earth is flat; and they can see this is true with their

own eyes. Physicists are convinced otherwise; and they can cite abundant evidence

on their side.

However, when it comes to Tachyons (faster-than-light particles), a great many

physicists believe that they do not, and some will say that they can not, exist; and

a number of reasons are recited in support of that prejudice.

In my several papers exploring mathematical frameworks for how Tachyons

might fit into physical theory and experiments I have taken the trouble to lay

out careful reasoning to debunk those prejudices. Do I have to review all those

arguments in every new paper I write? Maybe.

Firstly, all my work is done strictly within the established mathematical frame-

works of Special and General Relativity. (Some other authors have violated those

bounds.)

In my 2011 JMP paper, App. A looks at a scenario of sending tachyon signals

between earth and a distant rocket ship, alleging a causal paradox. It is argued that

an exchange of tachyon signals can lead to a response arriving before the original

message was sent out. Simply replacing the point particle by a wave packet shows

that, when one carries out the relevant Lorentz transformation, the distinction

between sending (emitting) and receiving (absorbing) a tachyon can disappear.

In my 2016 IJMPA paper, I state the appropriate principle of causality for

tachyons — no propagation slower than the speed of light; and this leads to a

consistent mathematical formalism for quantizing such fields. This provides an alter-

native to the canonical formalism, which is wrong for tachyon fields.

In my 2018 IJMPA paper, Sec. 2 examines the role of tachyons engaged in

a general multi-particle interaction. The common idea that negative energy states

imply physical instability of the system is debunked by recognizing that the naming

of in and out states is not Lorentz invariant. The total energy and momentum are

properly conserved.

In my 2016 paper on quantizing tachyon fields, especially for the spin 1/2 (Dirac)

case, I deal with the Little Group O(2, 1) by introducing an indefinite metric (the

helicity) into the Fock space.

Then there are experiments, a number of which over the years have claimed to

observe neutrinos as tachyons, and then been revised to the opposite conclusion.

The 2011 OPERA experiment looked at 20 GeV neutrinos and first reported that

they travelled faster than light by 1 part in 40,000. That would imply a tachyon

mass of about 100 MeV. But we know that neutrino mass is around 0.1 eV; and
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the excess velocity (v–c) goes as the square of the mass-to-energy ratio. That puts

us 14 orders of magnitude below the original (wrong) observation.

Finally, there are theoretical efforts to derive the existence of known particles

from some abstract field with complicated self-interactions. The simplest model is

a scalar field with a potential that looks like W . If one expands around the central

peak, then the resulting particles are found to be tachyons (negative mass-squared).

But then one recognizes that those states are unstable; one should instead expand

about the minima of W , where one gets ordinary particles. I am not involved in

that sort of theorizing.

I start with the question: If tachyons do exist, how would we describe them

within our customary mathematical frameworks? The starting point is the relativis-

tically invariant form for any 4-vector (e.g. the energy–momentum of a particle):

pµpµ = const. That constant may be positive, zero, or negative.
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