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Abstract: Recent innovations in the differential calculus for functions of non-commuting

variables, begun for a quaternionic variable, are readily extended to the case of a general Clifford

algebra and then extended more to the case of a variable that is a general square matrix over

the complex numbers. The expansion of F(x+delta) is given to first order in delta for general

matrix variables x and delta that do not commute with each other. Further extension leads to

the broader study of commutators with functions, [y, f(x)] , expressed in terms of [y, x].
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1. Introduction

In a recent paper [1] I showed how to expand

F (x+ δ) = F (x) + F (1)(x) +O(δ2) (1..1)

when both x and δ were general quaternionic variables, thus did not commute with each

other. It starts with the separation of the infinitesimal displacement into two parts,

δ = δ∥ + δ⊥ as follows.

δ∥ =
1

2
(1− uxδux), δ⊥ =

1

2
(1 + uxδux), (1..2)

x = x0 + ix1 + jx2 + kx3 = x0 + rux, r =
√
x21 + x22 + x23. (1..3)

This construction leads to the simple operator identities,

δ∥ x = x δ∥, δ⊥ x = x∗ δ⊥, (1..4)
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where x∗ is the complex conjugate of x, having all imaginary components changed in

sign. The final result is,

F (1)(x) = F ′(x)δ∥ + [F (x)− F (x∗)](x− x∗)−1 δ⊥, (1..5)

where F ′(x) is the ordinary derivative of the function F (x).

It was noted in [1] that this result for quaternionic variables can be written in terms

of a formal set of commutators:

F (x+ δ) = F (x) + F ′(x)δ∥ + [C,F (x)] +O(δ2), [C, x] = δ⊥. (1..6)

It is a trivial matter to extend this result for quaternions to any Clifford algebra.

x = x0 +
∑
i=1,n

ei xi, eiej + ejei = −2δij, (1..7)

since all we need to do is extend the definitions of ux and r:

∑
i=1,n

ei xi = rux, r =
√ ∑

i=1,n

x2i (1..8)

and then use the very same formulas as in Eqs. (1..2), (1..5). There is some further

material in Appendix D, where the venerable Fueter differential equation (for functions

of a quaternionic variable) is extended to a general Clifford algebra.

The purpose of this paper is to extend that earlier analysis of differential calculus to

a larger family of non-commuting variables. First we shall consider NxN matrices; then

we shall look at more general formulations.

2. Finite Matrices as the Variable

Consider the N x N matricesX over the complex numbers and arbitrary analytic functions

F (X) with such a matrix as its variable. We seek a general construction for the first order

term F (1)(X) when we expand F (X +∆) given that ∆ is small but still a general N x N

matrix that does not commute with X.

The first step, following earlier work, is to represent the function F as a Fourier

transform,

F (X) =
∫
dpf(p)eipX (2..1)

where the integral may go along any specified contour in the complex p-plane; and then

we also make use of the expansion,

e(X+∆) = eX [1 +
∫ 1

0
dse−sX∆ esX +O(∆2)]. (2..2)

Another well-known expansion, relevant to what we see in (2..2), is

eA B e−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . , (2..3)
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involving repeated use of the commutators, [A,B] = AB −BA.

The next step is to assume that we can find a matrix S that will diagonalize the

matrix X at any given point in the space of such matrices.

A = S X S−1, Ai,j = δi,j λi, i, j = 1, . . . , N (2..4)

and we carry out the same transformation on the matrix ∆:

B = S ∆ S−1 (2..5)

but, of course, the matrix B will not be diagonal.

Our task is to separate the matrix B into various parts, each of which will behave

simply in the expansion of Eq. (2..3). The first step is to recognize that the diagonal

part of the matrix B, call it B0, commutes with the diagonal matrix A and thus we have

etA B0 e
−tA = B0, (2..6)

where we have t = −isp from (2..1), (2..2).

Next we look separately at each off-diagonal element of the matrix B: that is, B(i,j)

is the matrix that has only that one off-diagonal (i ̸= j) element of the given matrix B,

and all the rest are zeros. The first commutator is simply

[A,B(i,j)] = rij B(i,j), rij = λi − λj (2..7)

and then the whole series can be summed:

etA B(i,j)e
−tA = etrij B(i,j). (2..8)

Putting this all together, we have

S F (1) S−1 =
∫
dpf(p) ip eipA

∫ 1

0
ds [B0 +

∑
i̸=j

e−isprij B(i,j)]. (2..9)

It is trivial to carry out the integrals over s; and we thus come to the final answer

F (1)(X) = F ′(X) ∆0 +
∑
i̸=j

[F (X)− F (X − rijI)] r
−1
ij ∆(i,j) (2..10)

where

∆µ ≡ S−1 Bµ S, µ = 0, (i, j). (2..11)

The general structure of the result, Eq. (2..10), is similar to what we found in earlier

work, Eq. (1..5): the first term F ′(X) looks like ordinary differential calculus and goes

with that part of ∆ that commutes with the local coordinate X; the remaining terms

are non-local, involving the function F evaluated at discrete points separated from X by

specific multiples of the unit matrix I.

While this final formula appears not as explicit as the previous result found for quater-

nionic variables, in any practical situation we have computer programs that can calculate

the matrix operations referred to above with great efficiency.
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A particular example, which was drawn out in [1], is the case of a variable built upon

the matrices of any rank which generate the Lie algebra SU(2).

The quantities rij, which may be real or complex numbers, can be called the “roots”

following the familiar treatment of Lie algebras. They have some properties, such as

rij = −rji and sum rules that involve traces of the original matrix X and powers of X.

What happens if the eigenvalues of X are degenerate? Suppose, for example, that

λ1 = λ2. This means that r12 and r21 are zero. If we look at Eq. (2..10), we see that

the terms ∆(1,2) and ∆(2,1) then have the coefficient F ′(x). Thus they simply add in

with ∆0. In the extreme case when all the eigenvalues are identical, then the answer is

F (X + ∆) = F (X) + F ′(X) ∆ + O(∆2), which is old fashioned differential calculus for

commuting variables.

Again, it is noted that the result Eq. (2..10) can be written as,

F (X +∆) = F (X) + F ′(X)∆0 + [C,F (X)] +O(∆2), [C,X] = ∆−∆0. (2..12)

3. General Commutator Formulation

Now we shall explore the more abstract form of the results reported above which involves

commutator equations for any noncommutative system.

F (1)(x) = F ′(x) δ0 + [C,F (x)], (3..1)

[C, x] = δ − δ0, [δ0, x] = 0. (3..2)

Here the operator C is defined implicitly, through its commutator with x, rather than

explicitly; and δ0 is that portion of δ that commutes with x (called δ∥ or ∆0 above). One

may readily confirm the correctness of this formulation in the case of F (x) = xn.

Here is a more formal-looking derivation of these equations. [2] Start with the follow-

ing identity for suitably smooth functions F (x).

eCF (x)e−C = F (eCxe−C), (3..3)

F (x) + [C,F (x)] + . . . = F (x+ [C, x] + . . .), (3..4)

where the dots indicate terms of second order or higher in the quantity C, which is

assumed to be small. If we now define the operator C by [C, x] = δ− δ0, with [δ0, x] = 0,

this yields,

F (x+ δ − δ0) = F (x+ δ)− F ′(x) δ0 + . . . = F (x) + [C,F (x)] + . . . . (3..5)

which connects Eq. (3..1) to the original statement of the differential calculus in Eq.

(1..1).

It is interesting that this new formalism manages to hide the non-locality, which was

a prominent feature of the previous examples.

In the rest of this paper I want to explore this commutator formalism as a general

mathematical problem: how to express a commutator with a function [y, f(x)] in terms

of [y, x].
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In any non-commutative (but associative) algebra, we have the basic identity,

[x, yz] = y[x, z] + [x, y]z; (3..6)

and repetition of this identity leads to the familiar formula,

[y, xn] =
n−1∑
m=0

xm [y, x] xn−m−1. (3..7)

We want to seek similar expressions for some familiar functions of x:

[y, f(x)] = something built around [y, x]. (3..8)

Some earlier studies [3] of this general problem assumed that the commutator [y, x] is a

constant; but here we want to go beyond that assumption.

4. Non-Integral Power

Let’s start with f(x) = xν for an arbitrary number ν. We introduce a parameter p, which

commutes with x and y, and consider the function:

Qν(p) = [y, (x+ p)ν ]. (4..1)

We have the algebraic identity

Qν(p) = [y, (x+ p)(x+ p)ν−1] = (x+ p)Qν−1(p) + [y, x](x+ p)ν−1; (4..2)

and we can also take the derivative,

dQν(p)

dp
= ν Qν−1(p). (4..3)

Combining these two equations we get a simple differential equation for Qν(p), which

is easily solved.

Qν(p) = ν (x+ p)ν
∫ ∞

p
ds (x+ s)−ν−1 [y, x] (x+ s)ν−1. (4..4)

Now, setting p = 0, we have the desired result,

[y, xν ] = ν xν
∫ ∞

0
ds (x+ s)−ν−1 [y, x] (x+ s)ν−1. (4..5)

An alternative version of this formula, starting with a rewrite of Eq. (4..2), is

[y, xν ] = ν
∫ ∞

0
ds (x+ s)ν−1 [y, x] (x+ s)−ν−1 xν . (4..6)

One special case of this general formula is the familiar result,

[y, x−1] = −x−1 [y, x] x−1; (4..7)
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and another, unfamiliar, special case comes from taking the limit as ν goes to zero:

[y, ln(x)] =
∫ ∞

0
ds

1

x+ s
[y, x]

1

x+ s
. (4..8)

From this we can derive the following.

[y, tan−1(x)] =
∫ 1

0
ds

1

1 + s2x2

(
[y, x]− s2x[y, x]x

) 1

1 + s2x2
. (4..9)

An alternative representation can be found, using the formula (A.1) in Appendix A,

for the case −1 < ν < 0:

[y, xν ] =
sin πν

π

∫ ∞

0
ds sν

1

x+ s
[y, x]

1

x+ s
. (4..10)

This can also be written as,

[y, xν ] = µ
sin πν

π

∫ ∞

0
ds

1

x+ sµ
[y, x]

1

x+ sµ
, µ = 1/(ν + 1). (4..11)

5. Exponential

To study the exponential function, we again introduce a real parameter,

R(p) = [y, epx]. (5..1)

We take the derivative with respect to p,

dR(p)

dp
= [y, xepx] = xR(p) + [y, x]epx, (5..2)

and solve this simple differential equation to get the result:

[y, ex] =
∫ 1

0
ds e(1−s)x [y, x] esx. (5..3)

I would not be surprised if this formula has been discovered before. A very similar looking

formula, which is well-known, is

d

dλ
ex(λ) =

∫ 1

0
ds e(1−s)x dx(λ)

dλ
esx. (5..4)

This result, Eq. (5..3), can also be derived from Eq. (4..5) if we make the substitution,

x→ (1 + x/ν) and take the limit ν → ∞.

6. Some Other Familiar Functions

The Chebyshev polynonials of the second kind Un(x) are defined by a simple generating

function.[4]
1

1− 2xt+ t2
=

∞∑
n=0

tn Un(x). (6..1)
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If we take the commutator of this equation with y, we find∑
n

tn [y, Un(x)] = 2t
1

1− 2xt+ t2
[y, x]

1

1− 2xt+ t2
. (6..2)

Now using the expansion (6..1) again; and collecting terms with the same power of t, we

find,

[y, Un(x)] = 2
n−1∑
m=0

Um(x) [y, x] Un−m−1(x). (6..3)

This is a remarkably simple formula; it looks similar to the earliest Eq. (3..7).

One can get a very similar-looking formula for the set of polynomials generated by

1/(1 − xt + χ(t)), where χ(t) is any power series starting off with t2. The special case

χ = 0 gives us Eq. (3..7). An application of this sort of generating function, with

multiple noncommuting variables, may be seen in an earlier study of infinite dimensional

free algebra in large N matrix theory.[5]

The Chebyshev polynomials of the first kind Tn(x) come from a slightly different

generating function and they yield the following formula.

[y, Tn(x)] = −[y, x] Un−1(x) + 2
n−1∑
m=0

Tm(x)[y, x] Un−m−1(x). (6..4)

Gegenbauer polynomials are given by this generating function,

(1− 2xt+ t2)−ν =
∞∑
n=0

tn Cν
n(x). (6..5)

For ν = 1 these are the Chebyshev and for ν = 1/2 these are the Legendre polynomials.

If I try to use the formulas above directly, then it results in a very complicated mess. In

Appendix A is a formula that relates this generating function Eq. (6..5) to an integral

over the simpler one of Eq. (6..1),

Cν
n(x) =

sinπν

π
2
∫ 1

0
du un−1 (1/u2 − 1)−ν Un(ux), 0 < ν < 1; (6..6)

and this lets us calculate [y, Cν
n(x)] using results above.

The Laguerre polynomials are given by another generating function,

(1− t)−α−1e−xt/(1−t) =
∞∑
n=0

tn L(α)
n (x). (6..7)

Following procedures given above, we find the commutator equation,

[y, L(α)
n (x)] = −

∫ 1

0
ds

n−1∑
m=0

L(α)
m ((1− s)x) [y, x] L

(0)
n−m−1(sx), (6..8)

which involves an integral and a finite sum.

Bessel functions of integral order are given from this generating function:

ex(t−t−1)/2 = J0(x) +
∞∑
n=1

[tn + (−t)−n]Jn(x). (6..9)
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If we take the commutator with y, use Eq. (5..3) and again compare the coefficients of

each power of t, we get a rather complicated formula, involving an integral and an infinite

sum. Here is the result for J0.

[y, J0(x)] =
∫ 1

0
ds

∞∑
m=0

(−1)m+1[Jm((1− s)x) [y, x] Jm+1(sx) + (6..10)

Jm+1((1− s)x) [y, x] Jm(sx)]. (6..11)

Another representation for some Bessel functions is the following [6].

xµ H(1)
µ (x) =

2

πi

∫ ∞

0
ds sµ+1 Jµ(s)

1

s2 − x2
, (6..12)

where the variable x lies in the first quadrant of the complex plane. Applying the com-

mutator [y, ] to this equation will give a simpler-looking formula.

For more in this vein, see Appendix B.

One more famous function is the Gamma function Γ(x) and we find the following

formula for its logarithmic derivative.

ψ(x) =
1

Γ(x)

dΓ(x)

dx
, [y, ψ(x)] =

∞∑
n=0

1

n+ x
[y, x]

1

n+ x
, (6..13)

which looks like the discrete analog of Eq. (4..8); and from this we also get,

[y, cot(x)] = −
∞∑

n=−∞

1

nπ + x
[y, x]

1

nπ + x
. (6..14)

7. Discussion

The results given in this paper are not only new, they are mostly of an unfamiliar form.

The formulas in Sections 4 and 5 involve definite integrals (over a parameter s) that

would be easy to evaluate if it were not for the operator [y, x] that stands in the midst

of simple functions of s and x. I suggest an interesting exercise for readers is to take the

special case y = d2/dx2 and see how those integrals work out. But also see Appendix C.

Are there any restrictions on the formulas derived above? Within Section 4, I should

specify that the operator x has eigenvalues with positive real parts. This is necessary to

give meaning to the nonintegral power of x and it will avoid singularities in the integrals

over the parameter s.

In Sections 4 and 5 there are formulas for the commutator of y with xν , ln(x), and

epx; and one should be able to relate those formulas. For example,

[y, xν ] = [y, eνlnx] =
∫ 1

0
ds e(1−s)νln(x) [y, νln(x)] esνln(x) = (7..1)

ν xν
∫ 1

0
ds x−νs

∫ ∞

0
dt

1

t+ x
[y, x]

1

t+ x
xνs. (7..2)

How do we get this to look like Eq. (4..5) ?
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Appendix A: Relating Generators

We want to relate the generating function in Eq. (6..5) to that in Eq. (6..1). We

start with a simple integral identity,∫ ∞

0

dζ

ζ +M
ζ−ν =

π

sin(πν)
M−ν , M > 0, 0 < ν < 1. (A.1)

For the problem at hand we have M = 1 − 2xt + t2. Now we can write the generating

function for the Gegenbauer polynomials as,

∞∑
n=0

tn Cν
n(x) =

sin(πν)

π

∫ ∞

0
dζ ζ−ν 1

ζ + 1− 2xt+ t2
. (A.2)

Now we just need to scale the variables t and x to get,

Cν
n(x) =

sin(πν)

π

∫ ∞

0
dζ ζ−ν 1

ζ + 1

1

qn
Un(x/q), q =

√
ζ + 1. (A.3)

Appendix B: A More Formal Approach

Given any analytic function f(x) we can write the equation,

f(x) =
1

2πi

∮
ds f(s)

1

s− x
. (B.1)

where the countour of the integral in the complex s-plane encloses the point x. Then,

taking the commutator, we have,

[y, f(x)] =
1

2πi

∮
ds f(s)

1

s− x
[y, x]

1

s− x
. (B.2)

How one might make practical use this equation is unclear.

Appendix C: Troublemaking

To illustrate the unfamiliarity of the “integrals-with-operators” seen in this paper,

lets start with the earliest result, Eq. (4..5).

[y, xν ] = ν xν
∫ ∞

0
ds (x+ s)−ν−1 [y, x] (x+ s)ν−1. (C.1)

Let me now scale the integration parameter as s = xt. This should be ok since we also

noted that we would want x to have positive real values. Then this formula would read,

[y, xν ] = νxν
∫ ∞

0
xdt x−ν−1 (1 + t)−ν−1 [y, x] xν−1 (1 + t)ν−1. (C.2)

It would now appear that we can move the factors (1+ t) past the operators y and x and

then simply evaluate the t-integral, leaving

[y, xν ] = ν [y, x] xν−1, (C.3)
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which is clearly wrong! The error may be ascribed to the step where we moved (1 + t)

past the operator y, since this new variable t was constructed to involve x, which does

not commute with y.

Appendix D: Fueter Equation for a General Clifford Variable

Fueter [7], long ago, studying calculus with a quaternionic variable, found a third

order differential equation that any “holomorphic” function of such a variable would

satisfy. We generalize that result for noncommuting variables based on a general Clifford

algebra.

For reference, we start with the familiar Cauchy-Riemann equation for an analytic

function of a complex variable,

(
∂

∂x
+ i

∂

∂y
)f(z = x+ iy) = 0. (D.1)

Now we want to consider the non-commuting variables x that are based on an n-dimensional

Clifford algebra,

x = x0 +
∑
i=1,n

ei xi, eiej + ejei = −2δi,j , (D.2)

and the quantities x0, xi are real numbers. The procedure we follow to get the generalized

Fueter differential equation is that given in [1] for quaternions (n=3).

Define the first order differential operator,

2n+1 =
∂

∂x0
+

∑
i=1,n

ei
∂

∂xi
, (D.3)

and see how that acts upon the particular function F (x) = epx for some real parameter

p.

epx = epx0(cos pr + Σ
sin pr

r
), (D.4)

r =
√ ∑

i=1,n

x2i , Σ =
∑
i=1,n

eixi, Σ2 = −r2 (D.5)

2n+1 e
px = (1− n) epx0

sin pr

r
. (D.6)

For n = 1 we have the Cauchy-Riemann formula, Eq. (D.1). For n = 3 we see

that the right hand side of Eq. (D.6) vanishes under action of the Laplacian operator in

4-dimensions.

△4 = 2∗
4 24 =

∂2

∂x20
+

1

r

∂2

∂r2
r. (D.7)

This gives us Fueter’s third order differential equation for functions of a quaternionic

variable.

△4 24 F (x) = 0, (D.8)

assuming that any function F (x) can be written as a real superposition of the exponentials

epx.
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Now, how do we go for n > 3? It appears that we can still write,

“△4” 2n+1 F (x) = 0, (D.9)

where I have put “quotation marks” around that operator △4 to mean that it is literally

what is written in Eq. (D.7) and the quantity r is meant to be the n-dimensional radial

distance defined in Eq. (D.5). So, this is not really the Laplacian operator in n+1

dimensions; but it is a third order differential equation that is satisfied.

Alternatively, it can be shown that one can introduce the correct Laplacian operator

in n+1 dimensions,

△n+1 = 2∗
n+1 2n+1 =

∂2

∂x20
+

∂2

∂r2
+
n− 1

r

∂

∂r
, (D.10)

and find the following formula, an n-th order differential equation, which appears to be

valid only for odd values of n.

(△n+1)
(n−1)/2 2n+1 F (x) = 0. (D.11)

This last result has been found earlier by researchers [8] who followed the classical

line of Fueter’s analysis. But the earlier formula Eq. (D.9) appears to be new.
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