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A Conjecture about Conserved Symmetric Tensors
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Abstract: We consider T(x), a tensor of arbitrary rank that is symmetric in all of its indices

and conserved in the sense that the divergence on any one index vanishes. Our conjecture is

that all integral moments of this tensor will vanish if the number of coordinates in that integral

moment is less than the rank of the tensor. This result is proved explicitly for a number of

particular cases, assuming adequate dimensionality of the Euclidean space of coordinates (x);

but a general proof is lacking. Along the way, we find some neat results for certain large matrices

generated by permutations.
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1. Introduction

In an n-dimensional real Euclidean space we consider symmetric tensors of any rank that

are “conserved” as follows, ∑
i=1,n

∂

∂xi

Tiw(x) = 0, (1)

where w is a string of indices (a “word”) of arbitrary length. If w = abc, then iw = iabc,

etc.; and we use the notation [w] to denote the length of the word w.

Our interest is in integrals of the form

(wL;wR) ≡
∫

dnx xwL TwR
(x), (2)

which we call “integral moments” of the tensor T , and xw is a product of coordinates

identified by the letters in the word w. We denote the null word by 0, so that x0 = 1. We

∗ Email:schwartz@physics.berkeley.edu



134 Electronic Journal of Theoretical Physics 10, No. 29 (2013) 133–140

assume that the tensors are functions well confined in space, so that all such integrals of

interest converge and we can do partial integration ignoring surface terms.

Our conjecture is that all integrals of the type (2) will vanish so long as [wL] < [wR];

and the identities (1) are necessary for this result to be true.

Usually one speaks about tensors in relation to some group of transformations; but

here that plays no role. This is just about algebraic manipulation of the indices.

This topic arose from a recent study of the General Theory of Relativity [1], where we

were looking at the asymptotic form of the potential produced by a source represented by

such a symmetric tensor. The main conclusion was that there is no long range potential

∼ 1/r.

2. The System of Equations

The general identity we start with is this,

< w1|w2 >≡ −
∑
i

∫
dnx xw1

∂

∂xi

Tiw2(x) =
∑
i

(∂iw1; iw2) = 0, (3)

where ∂iw means removing any occurrence of the letter i in the word w. Since we are

interested in symmetric tensors, the order of letters in any word is unimportant.

We can organize this host of equations by looking at the combined word W = w1w2 =

wLwR; and we see that the equations (3) separate into distinct subsets for each combined

word.

3. Examples

We proceed from the simplest examples of (3) to more complicated ones. In what follows,

I use the letters a, b, c, . . . to denote distinct values of the index i = 1, 2, . . . , n. It will be

advantageous to separate subsets of letters according to Young Tableaux, such as a3b2cd,

for example. The word w, as used below may be arbitrary.

[wL] = 0;W = aw : (4)

< a|w >= (0; aw) = 0. (5)

This is the simplest case, which says, when written out,

−
∫

dnx xa

∑
i=1,n

∂

∂xi

Tiw(x) =

∫
dnx Taw(x) = 0. (6)

We proceed to [wL] = 1.

[wL] = 1;W = a2bw : (7)

< aa|bw >= 2(a; abw) = 0, (8)

< ab|aw >= (a; abw) + (b; aaw) = 0. (9)
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So all these are zero.

[wL] = 1;W = abcw : (10)

< ab|cw >= (a; bcw) + (b; acw) = 0, (11)

< bc|aw >= (b; acw) + (c; abw) = 0, (12)

< ca|bw >= (c; abw) + (a; bcw) = 0. (13)

The solution of these three simultaneous equations in three unknows is that all three are

zero. We had to introduce the label c explicitly to get this result; which means that the

tensors involved here are at least of second rank and also that the dimensionality of the

space must be n ≥ 3.

Now we go to [wL] = 2; and here we need [W ] ≥ 5. The case W = a5w is trivial and

W = a4bw is similar to what is above in (7).

[wL] = 2;W = a3b2w (14)

< aaa|bbw >= 3(aa; abbw) = 0, (15)

< aab|abw >= 2(ab; aabw) + (aa; abbw) = 0, (16)

< abb|aaw >= (bb; aaaw) + 2(ab|aabw) = 0. (17)

The solution is that all three unknowns are zero.

[wL] = 2;W = a3bcw (18)

< aaa|bcw >= 3(aa; abcw) = 0, (19)

< aab|acw >= 2(ab; aacw) + (aa; abcw) = 0, (20)

< aac|abw >= 2(ac; aabw) + (aa; abcw) = 0, (21)

< abc|aaw >= (ab; aacw) + (ac; aabw) + (bc; aaaw) = 0. (22)

(23)

The solution is that all four unknowns are zero.

[wL] = 2;W = a2b2cw : (24)

< aab|bcw >= 2(ab; abcw) + (aa; bbcw) = 0, (25)

< abb|acw >= 2(ab; abcw) + (bb; aacw) = 0, (26)

< bbc|aaw >= 2(bc; aabw) + (bb; aacw) = 0, (27)

< abc|abw >= (ab; abcw) + (ac; abbw) + (bc; aabw) = 0, (28)

< aac|bbw >= 2(ac; abbw) + (aa; bbcw) = 0. (29)

These 5 equations in 5 unknowns have the solution that all unknowns are zero.
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[wL] = 2;W = a2bcdw : (30)

< aab|cdw >= 2(ab; acdw) + (aa; bcdw) = 0, (31)

< aac|bdw >= 2(ac; abdw) + (aa; bcdw) = 0, (32)

< aad|bcw >= 2(ad; abcw) + (aa; bcdw) = 0, (33)

< abc|adw >= (ab; acdw) + (ac; abdw) + (bc; aadw) = 0, (34)

< acd|abw >= (ac; abdw) + (ad; abcw) + (cd; aabw) = 0, (35)

< abd|acw >= (ab; acdw) + (ad; abcw) + (bd; aacw) = 0, (36)

< bcd|aaw >= (bc; aadw) + (bd; aacw) + (cd; aabw) = 0. (37)

(38)

These 7 equations in 7 unknowns have the solution that all unknowns are zero.

[wL] = 2;W = abcdew : (39)

< abc|dew >= (ab; cdew) + (bc; adew) + (ac; bdew) = 0, (40)

nine more equations by permutations. (41)

The solution of these ten simultaneous equations in ten unknows is that all ten are zero.

We had to introduce the labels de explicitly to get this result; which means that the

tensors involved here are at least of third rank and also n ≥ 5.

4. First Steps Toward a General Proof

Let’s start with the following set of cases, where the explicit part of W contains at most

two distinct labels.

[wL] = k; [wR] ≥ k + 1; W = a2k+1−mbmw; 0 ≤ m ≤ k (42)

< ak+1−rbr|ak−m+rbm−rw >= 0 = (43)

(k + 1− r)(ak−rbr; ak+1−m+rbm−rw) + r(ak+1−rbr−1; ak−m+rbm+1−rw), (44)

for 0 ≤ r ≤ m. For each set of values for k and m, this is a series of equations,

(k + 1− r)Q(r) + rQ(r − 1) = 0, (45)

which leads to Q(r) = 0 for all allowed values of r.

Next, let’s consider this set of cases:

[wL] = k; W = ak+1 xk w, (46)

where xk is some given word of length k. I also introduce the notation xk,r,α to stand for

the word that is made from some subset of r letters in the word xk; there are many such
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subsets and so the label α is meant to distinguish them from one another.Then we see

the series of equations,

< ak+1|xkw >= 0 = (k + 1)(ak; a xkw), (47)

< ak xk,1,α|a(xk/xk,1,α)w >= 0 = (48)

k(ak−1 xk,1,α; a
2 (xk/xk,1,α)w) + (ak; a xkw). (49)

The quotient xk/xk,r,α stands for that word which results when those r letters are removed

from xk. Eq. (47) involves r = 0; and Eqs. (48, 49) involve r = 1 as well as r = 0.

When we use the result of Eq. (47) in Eq. (49) we see that all those integral moments

formed with r = 0 and r = 1 vanish. We then go on to look at r = 2 and find that this

is an inductive series of equations. We conclude that all integral moments built from the

ansatz (46) vanish.

How does one go on to extend this proof? If we look at some of the earlier examples,

for example [wL] = 1, W = abcw, we see that this nice inductive situation does not

apply in all cases.

Here is one more set of cases that we can solve analytically.

[wL] = k; W = akbkcw (50)

< ak−rbr+1|arbk−r−1cw >= (k − r)Pr+1 + (r + 1)Pr = 0, (51)

Pr ≡ (ak−rbr; arbk−rcw); (52)

< ak−rbrc|arbk−rw >= (k − r)Qr + rQr−1 + Pr = 0, (53)

Qr ≡ (ak−r−1brc; ar+1bk−rw). (54)

We can solve the Eqs. (51) to yield,

Pr = (−1)r r! (k − r)!

k!
P0, r = 0, k; (55)

and also Eqs. (53) yield,

Qr = (−1)r r! (k − r − 1)!

(k − 1)!
(−rP0/k +Q0), r = 0, k − 1. (56)

Now, if we look at the two extreme cases for Eqs. (53), namely r = 0 and r = k, we

find

kQ0 + P0 = 0, (57)

kQk−1 + Pk = (−1)k (kP0 − kQ0) = 0. (58)

The solution of this is P0 = Q0 = 0, which makes all of the solutions equal to zero.

This suggests how we might solve the general problem involving at most three distinct

labels; but it gets rather tedious.
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5. Another Special Case

Consider now the special case of W, of length (2k+1), consisting of all different letters.

We saw examples of this in (10) and (39).

Let x, y, z represent any of the (k+1) length words contained in W; we want to use

these words to label the rows and columns of the simultaneous linear equations we are

studying. There are N of them, where N = (2k+1)!/k!(k+1)!.

For each chosen word x, there is its complement, x̄ = W/x , a word of length k. There

are also N of them.

The basic equations (3) are,

< x|x̄ >= 0 =
∑
a

(x/a; y = ax̄), (59)

where a is any one of the letters contained in x and y is formed by adding this letter a to

x̄. We can write this as the NxN system of simultaneous linear equations with the matrix

Ax,y whose entries are all +1 or zero.

We can see that this matrix A is symmetric. Consider the words y, which label the

columns of Ax,y. We saw how y is derived from x̄ = W/x for each nonzero element in the

row of A labeled by x. Consider now the row labeled by one of those y words: Ay,z. We

have the nonzero elements given by z = bȳ for some letter b contained in y. There will

be one case, b = a, that will yield z = x, exactly the word that y was derived from. So

we have shown that Ax,y = Ay,x.

We also see that A has only zeroes on the diagonal. So we have Tr(A) = 0.

If we look at the matrix A2 , we see that on its diagonal will be the number (k+1),

which is just how many 1s there are in each row (and each column) of A. So we conclude

that Tr(A2) = N(k + 1).

We are interested in exploring the eigenvalues, Ei, of the matrix A. There are N of

them and they are real numbers.

It is easy to find one eigenvector of A. It has all entries +1 and its eigenvalue is (k+1).

We can also calculate (with a computer) the determinant of A, and this is equal to

the product of all its eigenvalues.

Again, using the computer, we can search out the eigenvalues by calculating det(A-

EI) and seeing where (and how) it goes to zero as a function of E. In the results shown in

the table below, the superscript m in (E)m indicates the multiplicity of any eigenvalue,

shown by the behavior (E − Ei)
m of the calculated determinant in the neighborhood of

a zero.

TABLE: Computed properties of the matrices A
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k N Det Eigenvalues ∼ (E)m

1 3 2 (+2)1, (−1)2

2 10 48 (+3)1, (−2)4, (+1)5

3 35 47,775,744 (+4)1, (−3)6, (+2)14, (−1)14

4 126 1032.8 (+5)1, (−4)8, (+3)27, (−2)48, (+1)42

5 462 10136.4 (+6)1, (−5)10, (+4)44, (−3)110, (+2)165, (−1)132

6 1716 10557.7 (+7) . . .

7 6435 102259.5 (+8) . . .

It is surprising how these results look. There are few eigenvalues; they are all whole

numbers; and they form a neat pattern as we go up in k. Even the multiplicities, shown

as exponents on the eigenvalues, may be represented by simple formulas: in the second

column we see m = 2k and in the third column m = (2k + 1)(k − 1).

We shall look for more sum rules. From any trace formula we have a sum rule for the

eigenvalues.

Trace(Ar) =
∑
i=1,N

(Ei)
r ≡ Σr. (60)

Let’s return to the matrix A2 and write

(A2)x,z =
∑
y

Ax,yAy,z, (61)

y = ax̄, ∀ a ∈ x; z = bȳ, ∀ b ∈ y. (62)

There are two distinct cases. One is where b = a and this is just the diagonal part of A2

as earlier noted. The other is where b ∈ x̄. This leads us to the following construction.

A2 = (k + 1) I +Δ2, (63)

(Δ2)x,z = δz,bx/a, a ∈ x, b ∈ x̄, (64)

and I is the unit matrix. Reading this, it says that Δ2 connects to a new word z that has

one letter removed from the original word x and replaced by a letter from the complement

x̄.

We shall use this formula (64) to calculate some higher power traces. First, however,

we will need the formula,

(Δ2)
2 = C0 I + C2 Δ2 + C4 Δ4. (65)

From (64), we count C0 = k(k + 1); and with some care we count C2 = (2k − 1). Δ4

is a matrix that connects from x to a word with two letters removed and replaced with

two letters from x̄. We count C4 = 4 because there are 4 such paths; and the number of
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such paired sets is [(k+1)k/2][k(k− 1)/2]. We also note that there is zero Trace for Δ2,

Δ4 and also Δ2 Δ4.

With this, we now calculate,

A4 = (k + 1)(2k + 1) I + (4k + 1) Δ2 + 4 Δ4; (66)

and this leads to,

Σ4 = Trace(A4) = N(k + 1)(2k + 1), (67)

Σ6 = Trace(A6) = N [(k + 1)2(2k + 1) + (4k + 1)k(k + 1)] (68)

Σ8 = Trace(A8) = N [(k + 1)2(2k + 1)2 + (4k + 1)2k(k + 1) (69)

+4(k + 1)k2(k − 1)]. (70)

We have verified that all the eigenvalues given in the table above do satisfy these

summation formulas.

We can guess that the sum rules for the trace of the odd powers of A will be zero;

but this is verified only within the limitations that r < (2k + 1).

All we really wanted here was to see that there were no eigenvalues equal to zero;

however, what we have uncovered is quite suggestive of a larger mathematical reservoir

hiding behind these elementary investigations.

6. Discussion

Well, this looks like there should be a general theorem and it might involve something

about irreducible representations of the permutation group. But I don’t see how to prove

it.

As an example of the boundaries of this conjecture, suppose we review the above

calculations for [wL] = 2 but limit ourselves to tensors of rank two. Then we find, for

instance at W = a2b2,

(aa; bb) + 2(ab; ab) = 0, (71)

which tells us a relation between two integrals; but neither of them must be zero.

Another example: suppose the tensor is not symmetric in its indices. Consider [wL] =

1,W = abc and say that the second rank tensor is anti-symmetric in its indices. Then

one finds three equations, which have the solution,

(a; bc) = (b; ca) = (c; ab), (72)

but they need not vanish.
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