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A new computational procedure is o®ered to provide simple, accurate and °exible methods for
using modern computers to give numerical evaluations of the various Bessel functions. The

trapezoidal rule, applied to suitable integral representations, may become the method of choice

for evaluation of the many special functions of mathematical physics.
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1. Kº(z)

Let me start with this nice integral representation for one type of Bessel function,

K�ðzÞ ¼
Z 1

0

dt coshð�tÞe�z cosh t: ð1:1Þ

See Appendix A for reference.

What we o®er is a particular technique of numerical integration that is simple and

rapidly convergent for in¯nite integrals of smooth functions: the trapezoidal rule,

wisely applied. The general theorem1 says the following.

X1
n¼�1

hfðnhÞ ¼
Z 1

�1
dxfðxÞ þ E; ð1:2Þ

E ¼
X1
m¼1

F
2�m

h

� �
þ F � 2�m

h

� �� �
; ð1:3Þ

where F is the Fourier transform of the function f. If fðxÞ is quite smooth, then its

Fourier transform will decrease rapidly as the parameter h decreases.

Another way of describing this method is that we see all of the correction terms in

the Euler�Maclaurin series vanish. This means that as the interval h decreases, the

error in the trapezoidal rule decreases faster than any power of h. Precisely what that
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formula for the convergence rate is depends on the detailed analytic behavior of the

function fðxÞ. Typically, one sees some kind of exponential decrease: E � e��h��
. I do

not o®er any general theory about this formula, although particular models have

been studied in the past.1,2 For example, if � ¼ 1, one sees the number of correct

decimal places double as one halves the interval h. An essential virtue of this overall

method is that the practitioner can see what the convergence looks like and can

decide when to extend the calculation for better accuracy or to quit. The examples

shown in the tables below o®er such displays of rapidly converging output data.

For this method to be practical, one also needs the integrand to decrease rapidly

as the integration variable goes toward in¯nity; and the sum over mesh points is just

cut o® when the contributions drop below the desired accuracy. This is sometimes

helped by accelerating the rate of decay through a change of integration variable;

and we shall show an example of this technique in Sec. 3.

For readers who are new to this method, I recommend the simple exercise of

computing the in¯nite Gaussian integral,
R
dx e�x2 , using the trapezoidal rule (1.2).

Here, the error formula turns out to be E � e��2=h2
. A recent mathematical review of

this general technique may be found here.2

Applying this numerical technique directly to Eq. (1.1), we obtain the results

shown in Tables 1(a) and 1(b). This looks quite good: rapid convergence to

high accuracy at modest cost. The simple code for these calculations is shown in

Appendix B; arbitrary (real, positive) values of z and � may be input.

The number of mesh points used for the last line of data in Table 1(a) was 109, 73,

39, respectively.

The number of mesh points used for the last line of data in Table 1(b) was 150, 76,

31, respectively.

Table 1(a). Computations of Eq. (1.1) using method (1.2).

1/h K0ðz ¼ 0:1Þ K0ðz ¼ 1:0Þ � 10 K0ðz ¼ 10Þ � 105

1 2.42704 11398 56250 4.20936 51061 48591 2.28987 96730 52002

2 2.42706 90280 99576 4.21024 43651 11141 1.77845 16875 44865

4 2.42706 90247 02016 4.21024 43824 07083 1.77800 62316 16017

8 2.42706 90247 02016 4.21024 43824 07082 1.77800 62316 16764
16 2.42706 90247 02016 4.21024 43824 07086 1.77800 62316 16764

Table 1(b). Computations of Eq. (1.1) using method (1.2).

1/h K2:718ðz ¼ 0:01Þ � 10�6 K2:718ðz ¼ 1:0Þ K2:718ðz ¼ 100Þ � 1045

1 1.39714 10533 21390 4.54996 20838 02887

2 1.40690 20983 29460 4.49904 64843 96175 9.30030 05343 36706

4 1.40690 07287 78440 4.49903 44319 18784 5.14859 62786 90992

8 1.40690 07287 78468 4.49903 44319 18744 4.83095 95172 64883
16 1.40690 07287 78469 4.49903 44319 18749 4.83095 57412 19501

32 4.83095 57412 19519

C. Schwartz
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2. Jº(x) and Nº(x)

To get at the other Bessel functions we need to move our variables into the complex

plane. Here is one standard relation3:

H ð1Þ
� ðxÞ ¼ J�ðxÞ þ iN�ðxÞ ¼

2

i�
e�i��=2K�ð�ixÞ ð2:1Þ

and for now I'll take x as a real variable. This function N�ðxÞ is called Y�ðxÞ by some

authors.

Using the integral representation (1.1) now would not work well because what

was previously a decaying exponential function of t is now an oscillatory function.

However, we can move the contour of integration for that variable t so that it goes

toward the line ImðtÞ ¼ �=2; and this will restore the real exponential decay of the

integrand at large distances. Here is one prescription:

t ¼ sinhðuÞ þ i�

2
tanhðuÞ ð2:2Þ

and u is a new real integration variable which we will treat according to the general

method of Eq. (1.2). For an alternative approach, see Appendix C.

The simple program written for calculating K�ðxÞ is now expanded to accom-

modate complex variables; this runs to about 50 lines of code in C and some nu-

merical results are shown in Tables 2 and 3. The convergence looks quite good.

Table 2. Calculation of J�ðxÞ from Eq. (2.1) using (2.2) in (1.1).

1/h J1ðx ¼ 0:1Þ � 102 J1ðx ¼ 1Þ � 10 J1ðx ¼ 10Þ � 102

1 31.34519 12483 38983 4.84678 01345 03115 �0.49254 74998 14282

2 10.04145 83361 50352 4.40211 90106 01766 1.00684 96120 06995

4 4.66764 17956 85866 4.40051 65097 30195 4.31962 34829 07726

8 4.99456 06293 39347 4.40050 58776 70964 4.34727 46212 95072
16 4.99375 25888 30283 4.40050 58574 49333 4.34727 46168 86134

32 4.99375 26036 24231 4.40050 58574 49336 4.34727 46168 86136

64 4.99375 26036 24215 4.40050 58574 49336 4.34727 46168 86136

Table 3. Calculation of N�ðxÞ from Eq. (2.1) using (2.2) in (1.1).

1/h N1ðx ¼ 0:1Þ N1ðx ¼ 1Þ � 10 N1ðx ¼ 10Þ � 10

1 �8.81445 14807 36515 �8.76505 96245 40165 5.92701 15605 77872
2 �6.94259 74076 35009 �7.79957 53906 29861 3.00580 17631 63178

4 �6.44231 94399 89834 �7.81226 14661 84539 2.48848 46077 69873

8 �6.45895 10404 44470 �7.81212 82132 14771 2.49015 42425 77341
16 �6.45895 10946 34644 �7.81212 82130 02891 2.49015 42420 69539

32 �6.45895 10947 02030 �7.81212 82130 02888 2.49015 42420 69539

64 �6.45895 10947 02026 �7.81212 82130 02890 2.49015 42420 69538
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The number of mesh points used for the last line of data in these tables was 170,

143, 100, respectively.

3. Iº(x)

One can say that this Bessel function can almost always be e®ectively evaluated by

using the power series. But, to complete the program o®ered in this paper, we should

give an approach through an integral representation. Here is one, over an in¯nite

range, which is found in the standard references.4

I�ðxÞ ¼
1

2�i

Z 1þi�

1�i�

dt e�tex coshðtÞ; ð3:1Þ

which we can represent by the contour

t ¼ coshðuÞ þ cþ i� tanhðuÞ; ð3:2Þ
with the variable u treated by Eq. (1.2). The constant c is arbitrary but if we choose

c ¼ �1þ sinh�1ð�=xÞ, then the point of stationary phase occurs at u ¼ 0.

This works numerically but not quite as nicely as our previous examples: there is

greater loss of accuracy due to the oscillations of the integrand, especially at small

values of x.

So, let's look at an alternative integral representation for this Bessel function:

I�ðxÞ ¼
ðx=2Þ�ffiffiffi

�
p

�ð� þ 1=2Þ
Z �

0

d� sin2�� coshðx cos �Þ: ð3:3Þ

This is a purely real integral, with no oscillations, and the factor out in front takes

care of the behavior at small x. But, Is it amenable to the trapezoidal rule, Eq. (1.2),

for e®ective numerical integration? If the index � is an integer, the answer is yes,

because the integrand is a periodic function over the interval of integration.

For more general application, however, we change variables to map the integra-

tion onto the entire real line:

cos � ¼ t ¼ tanhðuÞ ð3:4Þ
and then treat the integration over u by the trapezoidal rule. Some results of this

calculation are shown in Table 4.

Table 4. Calculation of Eq. (3.3) using (3.4) and (1.2).

1/h I2ðz ¼ 0:01Þ � 105 I2ðz ¼ 1:0Þ � 10 I2ðz ¼ 100Þ � 10�42

1 1.30643 43443 38658 1.38166 26095 67052 1.20677 58487 72873

2 1.25004 98297 92758 1.35743 37442 58898 1.05923 08945 34915
4 1.25001 04167 00829 1.35747 66976 67279 1.05238 50353 94902

8 1.25001 04166 99218 1.35747 66976 70383 1.05238 43193 24316

16 1.25001 04166 99218 1.35747 66976 70383 1.05238 43193 24312
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The number of mesh points used for the last line of data in Table 4 was 153, 154,

184, respectively.

In all cases one may try to accelerate the rate of decay of the integral by such

further transformations as u ¼ sinhðvÞ or u ¼ v3. For the same accuracy as shown in

Table 4, this technique reduces the number of mesh points needed by a factor of 2 or

3. For the data shown in previous tables, this did not produce improvement.

All numerical results given in this paper were obtained by calculations in ordinary

double precision (16 decimals).

For the general use of Eq. (3.3) one needs accurate evaluation of the Gamma

function for arbitrary argument; and that particular topic is mentioned in the fol-

lowing section.

4. Discussion

There are standard libraries available for the numerical computation of Bessel

functions, which rely on a variety of old techniques.a They use power series for small

argument, asymptotic series for large arguments, various schemes involving recur-

rence relations and interpolation for intermediate arguments. As far as I can tell, the

technique presented here, which seems to cover all those bases in one grand sweep, is

new and has not been recognized before, although the general principles behind this

technique have been known for some time.

This technique appears to be uniquely valuable on several accounts: it gives high

accuracy in rapid time; it is °exibly applicable to all sorts of Bessel functions; it is

simple to program, relying on the standard computer routines for e±cient evaluation

of ordinary trigonometric functions (with real or complex arguments). It also invites

the programmer (mathematician, physicist, engineer, or student) to be completely in

charge of the analytical/numerical process, rather than relying on a big black box

provided by some remote experts.

There is room for further exploration of various contours of the integration, since

the simple ones used above may not be the most e±cient. I expect that this general

approach can be used for arbitrary complex values of the argument z and order �,

although I have not investigated those ideas. There are also some di±cult problems

in remote corners of Bessel function parameters5; and whether or not the present

method might be better in all cases is an open question.

Finally, one can reasonably expect that other types of \special functions," beyond

Bessel, can be e±ciently evaluated using these ideas if one has nice integral repre-

sentations to start with.

For one example, the Gamma function can be nicely computed by using a contour

integral:

1

�ðzÞ ¼
1

2�i

Z
dt ett�z; t ¼ 2� coshðuÞ þ i sinhðuÞ ð4:1Þ

aI have been able to look into the open source libraries GSL and Ceres; how these things are done by

Mathematica is unknown to me.
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and the in¯nite integral over the real variable u is treated according to (1.2). See

Table 5 for some numerical results.

Another famous function that is nicely handled this way is the zeta function.

�ðsÞ ¼
X1
n¼1

1

ns
¼ 1

2�ðsÞ
Z 1

�1
du esu

e�t=2

sinhðt=2Þ ; t ¼ eu: ð4:2Þ

With a further acceleration by the change of variables u ¼ sinhðvÞ, this gives e±cient

calculations with the trapezoidal rule.

Appendix A

Equation (1.1) may not be familiar. In fact, I do not ¯nd it in my standard reference

book.3 So, let me show that it is correct. Apply the di®erential operator:

z2
d2

dz2
þ 1

z

d

dz
� �2

z2
� 1

� �
K�ðzÞ

¼
Z 1

0

dt coshð�tÞ½z2 cosh2 t� z cosh t� �2 � z2�e�z cosh t

¼
Z 1

0

dt coshð�tÞ d2

dt2
� �2

� �
e�z cosh t ðA:1Þ

and that equals zero. So this is some Bessel function. Now look at how this integral

behaves as z ! 1: It will be dominated by small values of t and we readily ¯nd,

K�ðzÞ !
ffiffiffiffiffiffi
�

2z

r
e�z; ðA:2Þ

which correctly identi¯es this particular Bessel function.

Appendix B

Here is the code used for calculation of the data in Tables 1(a) and 1(b).

#include <stdio.h>

#include <math.h>

int main (void)

fdouble z,t,term,sum,h,nu;

Table 5. Calculation of �ðzÞ using (4.1) and (1.2).

1/h �ðz ¼ 0:1Þ �ðz ¼ 1þ i10Þ
2 9.55495 13353 97527

4 9.51350 56276 59931 3.88422 34738 42538e-07þ i1.13738 21528 01491e-06

8 9.51350 76986 68703 3.91892 92710 32289e-07þ i1.12844 79696 26640e-06

16 9.51350 76986 68744 3.91892 92708 81460e-07þ i1.12844 79695 84611e-06
32 9.51350 76986 68734 3.91892 92708 81405e-07þ i1.12844 79695 84617e-06

64 3.91892 92708 81394e-07þ i1.12844 79695 84628e-06

C. Schwartz
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int n,k;

do fprintf("Enter nu and z for Bessel function K_nu(z): ");

scanf("%lf %lf",&nu,&z);

h=2.0;

for(k=1;k<=8;k++) /* sequence of decreasing values of h */

ft=0.; /* the first point of the integral */

sum=0.5*exp(-z);

n=1;

do ft+=h; /* successive points of the integral */

term=cosh(nu*t)*exp(-z*cosh(t));

sum+=term;

n++;g
while(term/sum> 1.e-20); /* deciding when to quit */

printf("h= %lf, n=%d, ans = %24.16e\n",h, n, h*sum);

h=h/2.;g
g while(1);

return 0;g

Appendix C

Let me explore an alternative contour to the one given in Eq. (2.2). Move the contour

integral of t ��� which originally went out along the real axis from zero to in¯nity ���
as follows. First leg is t ¼ ð0; 0Þ to t ¼ ð0; i�=2Þ. Second leg is t ¼ ð0; i�=2Þ to

t ¼ ð1; i�=2Þ.
It will simplify this discussion if I just take the special case of � ¼ 0. The result of

doing this leads to the following integral formulas.

J0ðxÞ ¼
2

�

Z �=2

0

d� cosðx cos �Þ; ðC:1Þ

N0ðxÞ ¼
2

�

Z �=2

0

d� sinðx cos �Þ � 2

�

Z 1

0

ds e�x sinhðsÞ: ðC:2Þ

These formulas are found in the standard literature.3 But, are these integrals suitable

for the particularly powerful method of numerical integration discussed in this

paper? For J0 the answer is yes; but this is only for special cases of the index �; and it

works because the integrand is a periodic function. For N0 the answer is no. Neither

of the two integrals there satis¯es the conditions for our method (although one could

probably change the integration variables and make them conform to the type de-

sired). An interesting question was whether the end-point correction terms from each

of the two integrals at the pivot point t ¼ ð0; i�=2Þ might cancel; and the answer

appears to be negative. This is interpreted as emphasizing the role of continuous

(analytic) functions and variables in getting the power of the present integration

method. The contour discussed in this Appendix has a kink in it; and that is a spoiler.

Numerical Calculation of Bessel Functions
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