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Most of theoretical physics is based on the mathematics of functions of a real or a
complex variable; yet we frequently are drawn in trying to extend our reach to
include quaternions. The noncommutativity of the quaternion algebra poses ob-
stacles for the usual manipulations of calculus, but we show in this paper how
many of those obstacles can be overcome. The surprising result is that the first
order term in the expansion of F�x+�� is a compact formula involving both F��x�
and �F�x�−F�x��� / �x−x��. This advance in the differential calculus for quaternionic
variables also leads us to some progress in studying integration. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3058642�

I. INTRODUCTION

We are very familiar with functions of a real or complex variable x which we can expand, in
the mode of differential calculus, as

F�x + �� = F�x� + F��x�� + 1
2F��x��2 + ¯ . �1.1�

However, what if we consider a quaternionic variable

x = x0 + ix1 + jx2 + kx3 �1.2�

involving four real variables x�, �=0, 1, 2, 3, along with those quaternions i, j, k which do not
commute with one another,

i2 = j2 = k2 = − 1, ij = − ji = k, . . . . �1.3�

The small quantity � will also involve all those quaternions. How then can we expect anything as
neatly packaged as Eq. �1.1�?

This is a long-standing challenge to mathematicians. The earliest attempt to extend the usual
concept of the derivative dF /dx with a quaternionic dx failed dramatically. The subsequent ap-
proach focused on the four real variables,

dF�x� = �
�

�F�x�
�x�

dx�. �1.4�

That approach, often called quaternionic analyticity, springs from the work in the 1930s by Fueter1

and his school, with more accessible articles reviewing that subject available in Refs. 2 and 3.
Some more recent attempts to advance that work may be found in Refs. 4–6. In Appendix C I
provide a rough summary of the Fueter approach.

The first new result presented in this paper is an alternative approach to the differential
calculus—something between relying on the whole quaternionic variable, dF /dx, and resorting to
the four-component real variables, as in Eq. �1.4�. This starts, in Sec. II, with the separation of the
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quaternionic displacement � into two parts, one “parallel” and the other “perpendicular” to the
quaternionic variable x as it may be envisioned in that four-dimensional space.

The subsequent sections show how this leads to a surprisingly compact and general formula
for the quaternionic version of the expansion �1.1�:

F�x + �� = F�x� + F��x��� + �F�x� − F�x���/�x − x���� + O��2� . �1.5�

In the second part of this paper we look at integration and find that the new form of the
quaternionic differential leads to new results in this other realm of calculus.

II. LOCAL COORDINATES

The standard approach to quaternionic variables starts with a global set of imaginary coordi-
nates,

x = x0 + ix1 + jx2 + kx3, � = �0 + i�1 + j�2 + k�3. �2.1�

We now want to write x in a different way:

x = x0 + uxr, r = �x1
2 + x2

2 + x3
2, ux

2 = − 1, �2.2�

where ux is a unit imaginary that varies in its i, j, k compositions as x moves from one point to
another in that four-dimensional space. This is analogous to the use of polar coordinates in
two-dimensional Euclidean space.

Now we want to decompose the quaternionic quantity � in a particular way that refers to this
local coordinate system,

� = �� + ��, �� = 1
2 �� − ux�ux�, �� = 1

2 �� + ux�ux� , �2.3�

which leads to the algebraic relations

��ux = ux��, ��ux = − ux��. �2.4�

The essence of this approach is expressed in the nomenclatures parallel and perpendicular for
these two components of � as they relate to the local quaternion x. The most useful way to write
these relations is

��x = x��, ��x = x���, �2.5�

where � is the complex conjugation operator that changes the sign of all imaginaries.1 Now we
shall give three examples of how to expand F�x+�� with this simple machinery.

III. THE FUNCTION F„x…=xn

We calculate directly

�x + ��n = xn + �
m=0

n−1

xn−m−1�xm + O��2� . �3.1�

Putting in the separation �=�� +�� and using the properties of Eq. �2.5�, the sum becomes

� = �
m=0

n−1

�xn−1�� + xn−m−1x�m��� = nxn−1�� + �xn − x�n��x − x��−1��, �3.2�

where we evaluated a finite geometric series.

1The efficacy of this technique was discovered as the result of a more long-winded calculation, which may be seen in Ref.
7.

013523-2 Charles Schwartz J. Math. Phys. 50, 013523 �2009�

Downloaded 03 Feb 2009 to 169.229.32.136. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



IV. THE EXPONENTIAL FUNCTION

For a general quaternionic variable x, we can define the exponential function in the usual way:

ex = lim
N→�

�1 +
x

N
	N

, �4.1�

and this leads us to the expansion

e�x+�� = ex
1 + �
0

1

dse−sx�esx + O��2�� , �4.2�

which is correct for the situation where x and � do not commute. For a derivation of this formula,
see Appendix A.

Putting in a real parameter p and following the course set above, we get the expansion

ep�x+�� − epx = �
0

1

dspe�1−s�px��� + ���espx �4.3�

=�
0

1

dspepx�� + �
0

1

dspe�1−s�pxespx��� �4.4�

=pepx�� + �epx − epx���x − x��−1�� �4.5�

to first order in �.

V. GENERAL ANALYTIC FUNCTION F„x…

For a general analytic function F�x� of a quaternionic variable x, we start by assuming a
representation as a Laplace transform:

F�x� =� dpf�p�epx, �5.1�

where p is a real variable. We then use the result of the previous section to obtain

F�x + �� − F�x� = F��x��� + �F�x� − F�x����x − x��−1�� + O��2� , �5.2�

where F��x� is the derivative of the function F�x� calculated as if x were a real variable. This is our
general result. The particular result of Sec. III, for F�x�=xn, also fits this general formula, and thus
it also works for any power series F�x�=�ncnxn.

The authors of Ref. 4 have taken an approach somewhat similar to what is done here. They
introduced a local unit imaginary �which they call iota� that is the same as what we have defined
as ux. However, they limit their differentiations to displacements that are restricted to the two-
dimensional space of what we call �� without allowing any of ��. In that way they merely
reproduce what is known about ordinary complex variables.

VI. FURTHER EXERCISES

Let us define the first order differential operator D, from Eq. �5.2�, as

F�x + �� = F�x� + DF�x� + O��2� , �6.1�

with
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DF�x� = F��x��� + �F�x� − F�x����x − x��−1��. �6.2�

Several interesting exercises are now suggested.
Calculate D�F�x�G�x�� and verify the applicability of Leibnitz’ rule. Calculate D�1 /G�x�� and

also DF�G�x��.

VII. ALTERNATIVE ARRANGEMENTS

Still another way to represent our result for the first order differential is in terms of some
partial derivatives, defined as follows:

DF�x� =
�F�x�
�x�

dx� +
�F�x�
�x�

dx�, �7.1�

�F�x�
�x�


 F��x�,
�F�x�
�x�


 �F�x� − F�x����x − x��−1. �7.2�

Suppose we restrict the functions F�x� to be real: that is, the coefficients cn in F=�ncnxn or the
amplitudes f�p� in the Laplace transform are real numbers. Then it is noted that the terms in Eq.
�5.2� can be written with the displacement quaternions, �� and ��, written either to the right or to
the left of their accompanying factors. This is obvious in the case of F��x�, since �� commutes with
x. For the second term, we know that �� does not commute with x; it takes the complex conjugate.
However, we note that the whole expression �F−F�� / �x−x�� is real; therefore this rearrangement
is possible. The same rearrangement can be done with Eq. �7.1�.

These considerations lead us to note that the second term in the equation for DF�x� can be
written in terms of commutators as

�F�x� − F�x����x − x��−1�� = �C,F�x�� , �7.3�

where C is defined by

�C,x� = ��, C =
1

x� − x
��. �7.4�

What is somewhat surprising about this alternative arrangement, Eq. �7.3�, is that the expression
on the left hand side is manifestly nonlocal, involving things evaluated at the point x and also at
the remote point x�; however, the right hand side appears to be local, involving only x. This
confusion is removed when one recognizes that C is a nonlocal operator, involving ��, which
changes x to x�.

VIII. SECOND ORDER TERMS

Let us return to the exponential function �4.1� and proceed with the expansion

e�x+�� = ex
1 + �
0

1

dse−sx�esx + �
0

1

dt�
0

1−t

dse−�s+t�x�etx�esx + O��3�� . �8.1�

The best approach is to combine the exponential function and the Laplace transform from the
beginning. Writing F�x+��=F�x�+F�1�+F�2�+¯, we now look at

F�2� =� dpf�p�epxp2�
0

1

dt�
0

1−t

dse−�s+t�px�etpx�espx. �8.2�

Again, we decompose � and after a bit more work arrive at the result for the second order term,
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F�2� = 1
2F��x���

2 + �F�x� − F�x����x − x��−2����� − ���� + F��x��x − x��−1���

+ F��x���x� − x�−1���� . �8.3�

It is also true that, with the first order term given as F�1��x�=DF�x�, the second order result
can be written as

F�2��x� = 1
2DDF�x� . �8.4�

To verify this one needs the preliminary formulas,

Dx = �, Dx� = ��, D� = 0, Dux =
1

r
��, �8.5�

along with ��
���=���� and ��

� =−��. See further in Appendix D.

IX. DISCUSSION ON DIFFERENTIALS

It is surprising how simple and how general the new results obtained here are. It is also
noteworthy that our differential operators are no longer local: they involve F�x�� along with F�x�.

One may ask what restrictions there are on the functions F�x� considered above. At first, one
would say that they should be real analytic functions; having terms such as xax where a is a
general quaternion would certainly cause trouble.2 One can extend this condition slightly by
allowing F�x� �but not the function G�x� in Sec. VI� to be a real function with arbitrary quater-
nions multiplying from the left. That is, the power series form F=�ncnxn could have arbitrary
numbers cn. This bias to the left hand side can be reversed if we change the original steps �4.2�,
setting s→1−s, and �5.1�, putting f�p� on the right hand side.

The Taylor series we have discussed above are expansions about the origin x=0. In the usual
complex analysis such power series may be about any fixed point x=xf, but such a quaternion
constant put in the middle of our expressions would appear to cause trouble. That trouble could be
avoided by limiting xf to be real, but there is a better way. If we define a new quaternionic variable
y=x−xf then we may proceed as done above only using the appropriate unit imaginary uy instead
of the original ux in order to separate the displacement � into parallel and perpendicular compo-
nents.

One may also ask if this general method may be applied to some other kind of noncommuting
algebra beyond the quaternions. I believe that something very similar can be done starting with a
Clifford algebra. Other examples are given in Appendix B and in Ref. 8.

X. INTRODUCTION TO INTEGRATION

When the conventional approach to analyticity of quaternionic functions failed in the differ-
ential calculus, the main push was then in the realm of integral calculus. The key result of the
Fueter school was a third order differential equation that could define a “regular” function of a
quaternionic variable, just as the Cauchy–Riemann equation was a first order constraint on func-
tions of a complex variable z=x+ iy. That approach is described roughly in Appendix C. Their
result is a focus on integrals over a three-dimensional surface in the four-dimensional space. With
the construction of the quaternionic differential operator D we can do something quite different
about integration, as is shown in the following two sections.

XI. THE LINE INTEGRAL

In ordinary calculus of functions of the real variable t, we know what is meant by an integral,
such as �f�t�dt. However, when we first consider quaternionic �or other noncommuting� variables
it is unclear even how to write such an expression. We shall pursue that path in Sec. XII.

2This use of the term “real analytic” differs from that found in Ref. 3.
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Alternatively, we can start with the defining relation between the integral and the differential:

�
a

b

df�t� = �
a

b df�t�
dt

dt = f�b� − f�a� , �11.1�

and this is what we shall generalize for our noncommuting quaternionic variable x as

�
a

b

DF�x� = F�xb� − F�xa� . �11.2�

We define this integral as an additive operation along a path in that four-dimensional space of the
real variables x�,

x = xpath�s�, xpath�0� = xa, xpath�1� = xb, �11.3�

where s is a real continuous parameter.
Next, we subdivide that path, whatever it may be, into a large number of infinitesimal incre-

ments,

�
a

b

= �
n=1

n=N ��n�

, ��n�

= �
xn−1

xn

, n = 1, . . . ,N , �11.4�

where x0=xa and xN=xb.
In any segment of this path we choose the line of integration, with the integrand DF�x�, to be

the sum of two infinitesimal parts:

xn − xn−1 = � = �� + ��. �11.5�

The first part is parallel to the direction of x at that point, giving the contribution

�
�

DF�x� = F��x��� . �11.6�

Then the second part is perpendicular, giving the contribution

�
�

DF�x� = �F�x� − F�x����x − x��−1��. �11.7�

The sum of these two parts is thus nothing other than

F�xn� − F�xn−1� �11.8�

to first order in the interval �. The entire sum then results in Eq. �11.2�.
Another general proof can proceed as follows. If we start with the coordinate along the path

x�s�=xpath�s�, then we can simply write

Dx�s� = ds
dx�s�

ds
�11.9�

since there is no commutativity problem in this representation. It is also true that we can express
any function composed of powers of x as

F�x�s�� = A�s� + B�s�x�s� , �11.10�

where A and B are real functions, the only quaternions being in the single factor x�s�. We then see
that the integral becomes quite ordinary:
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�
a

b

DF�x�s�� = �
0

1

ds
dF�x�s��

ds
= F�x�s���0

1 = F�xb� − F�xa� . �11.11�

Since this differential operator D obeys the Leibnitz rule, we get the identity, usually called
“integration by parts,”

�
a

b

F�x�DG�x� = F�xb�G�xb� − F�xa�G�xa� − �
a

b

�DF�x��G�x� . �11.12�

Loosely speaking, integration is the inverse of differentiation. What we see in Eqs. �11.1� and
�11.2� is one statement of that relationship. However, there is also the other form, which is stated
for real variables as

d

dt
�t

f�t��dt� = f�t� . �11.13�

For our quaternionic variables we start by looking at

Dx�x

Dx�F�x�� �11.14�

and then apply the first differential operator to the coordinate x in two parts: first the �� part and
then the �� part. The result is just the integrand evaluated at the point x:

=DxF�x� , �11.15�

and this is just what we should expect from the right hand side of Eq. �11.2�, with xb replaced by
x.

XII. THE OTHER LINE INTEGRAL

If we look at the common real integral and try to guess how to generalize it to the noncom-
mutative quaternions, we might start with

� f�t�dt→
? 1

2
� �dxF�x� + F�x�dx� . �12.1�

But why should dx only appear on the outside; why not also in the middle of the function F�x�?
Let us try a most symmetrical arrangement with the function F�x�=xn:

� tndt→
? 1

n + 1
� �dxxn + xdxxn−1 + x2dxxn−2 + ¯ + xndx� . �12.2�

However, we can recognize that the long expression in parentheses on the right hand side of this
is nothing other than Dxn+1:

DF�x� 
 F�x + dx� − F�x� to first order in dx . �12.3�

So we would then write

� tndt →
1

n + 1
� Dxn+1 =

xn+1

n + 1
�12.4�

using our defining equation �11.2�. Now, this looks quite familiar.
We can extend this to any power series and thus offer the following rule. For any analytic

function of a real variable f�t�, for which we know the integral
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� f�t�dt = h�t� , �12.5�

we can make the correspondence to quaternionic integration as follows:

� f�t�dt →� Dh�x� = h�x� . �12.6�

While this may look trivial for real and complex variables, it is something new for noncommuting
variables. This arises because we have carefully defined and studied the operator D.

XIII. DISCUSSION ON INTEGRATION

Following what was stated earlier, we do require the functions F�x� to be real analytic func-
tions along the path of integration. Terms such as xax would be allowed only for real constants a.

Our first new result Eq. �11.2� implies that the result of the integration depends only on the
end points and is independent of the path. This is true if we also require that the function F�x� be
single valued. Then, we have the result that the integral over any closed path, ending up at the
same point where it started, is zero. This is a significant new result, carrying the world of contour
integration over from the complex domain to the quaternionic. Our second new result, Eqs. �12.5�
and �12.6�, opens up considerable possibilities for integration of quaternionic functions.
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APPENDIX A: EXPANSION OF THE EXPONENTIAL

Here we give a derivation of the formula �4.2� for any noncommuting quantities x and �,

e�x+�� = lim
N→�


1 +
x

N
+

�

N
�N

�A1�

= lim
N→�

�
1 +
x

N
�N

+ �
m=0

N−1 
1 +
x

N
�N−m−1 �

N

1 +

x

N
�m

+ O��2�� . �A2�

In taking the limit N→�, we convert the sum over m to an integral over s=m /N and this yields

e�x+�� = ex + �
0

1

dse�1−s�x�esx + O��2� . �A3�

APPENDIX B: SU„2,C…

Here we shall extend the general method used above for a quaternionic variable to something
built on a Lie Algebra—specifically SU�2�. Here is the Lie algebra:

�J1,J2� = J3, �J2,J3� = J1, �J3,J1� = J2, �B1�

where the three J are understood to be matrices over the complex numbers. In particular, we shall
use the relations

e�J3J1e−�J3 = J1 cos � + J2 sin �, e�J3J2e−�J3 = J2 cos � − J1 sin � , �B2�

which follow from ��B1�.
The new variable x is to be constructed with four real parameters as
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x = x0I + x1J1 + x2J2 + x3J3 �B3�

and we want to expand F�x+��=F�x�+F�1�+O��2�, where � is a small quantity in that same space
of matrices as x. Our first step is to define a local coordinate system at the given point x. By a
suitable linear transformation �rotation� of the Lie algebra we make the coordinate x appear as

x = x0I + rJ3, �B4�

where we recognize that r2=x1
2+x2

2+x3
2.

We can now separate the displacement �=�� +�� as follows:

�� = �0I + �3J3, �� = �1J1 + �2J2. �B5�

Now we are ready to study the first order term in the expansion, again using the representation of
F�x� in terms of the exponential function,

F�1� =� dpf�p�pepx�
0

1

dse−spx�espx. �B6�

Since �� commutes with x, the first part of this is simply F��x���. For the part with �� we use the
formulas �B2�, where � is replaced by −spr. The integrals over s are trivial and we merely write
sin�pr� and cos�pr� in terms of e�ipr to get our final result,

F�x + �� = F�x� + F��x��� + �F�x + ir� − F�x − ir��
1

2ir
��

+ �F�x + ir� + F�x − ir� − 2F�x��
1

2r
�J3,��� + O��2� . �B7�

It should be noted that the �-related factors in Eq. �B7� can be written in the following way:

�J3,��� =
1

r
�x,�� , �B8�

�� = −
1

r2 �x,�x,��� , �B9�

�� = � − ��. �B10�

This means that we do not have to carry out the “rotation” that gave us Eq. �B4� explicitly; the talk
about choosing a local coordinate system is merely rhetorical.

I expect that this method can be extended to other Lie algebras, with the quantity �� subdi-
vided into distinct portions according to the roots of the particular algebra. The system of Eqs.
�B9� and �B10� would be adapted to make those separations using the known values of the roots,
and those root values would also appear in the final generalization of Eq. �B7�. Extension of this
method to general matrix variables, over the complex numbers, is given in Ref. 8.

APPENDIX C: FUETER’S DIFFERENTIAL EQUATION

The literature on Fueter’s analysis of quaternionic functions points to a third order differential
equation as his key result, extending the familiar Cauchy–Riemann �first order� equation for
functions of a complex variable,
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� �

�x
+ i

�

�y
	 f�z = x + iy� = 0. �C1�

Here I wish to present a rather simple derivation of that result, starting with the exponential
function of our quaternionic variable,

x = x0 + ix1 + jx2 + kx3 = x0 + u · x, u = �i, j,k�, r2 = x · x , �C2�

epx = epx0�cos pr + u · x
sin pr

r
	 . �C3�

Here is Fueter’s first order differential operator,

� =
�

�x0
+ i

�

�x1
+ j

�

�x2
+ k

�

�x3
=

�

�x0
+ u · � , �C4�

and we calculate its action on the exponential function and find the result

�epx = − 2epx0
sin pr

r
. �C5�

This is not zero �as in the complex case, Eq. �C1�� but it is rather simple �and real�. Moreover, we
recognize this function as a solution of the four-dimensional Laplace equation,

�4 = � �� =
�2

�x0
2 + �3. �C6�

So here are two forms of Fueter’s third order differential equation,

�4 � epx = 0, �4 � xn = 0, �C7�

where the second result comes from expanding the first result in a power series in the parameter
p. Thus any superposition �with real coefficients� of the powers or the exponential will satisfy this
condition, and this is the basis for what they define as holomorphic functions of a quaternionic
variable. They also exclude functions with terms such as xax with arbitrary quaternion constants
a—just as we have done in the present paper.

From those differential equations �C7� �Cauchy–Riemann–Fueter�, some integral theorems
follow. In the case of complex variables �C1�, we get the familiar result that any integral around
a closed path in the complex plane will be zero �with suitable analytic and single-valued behavior
of the function f�z��. In the quaternionic case, the relevant integral is over a closed three-
dimensional surface in the four-dimensional space of the x�.

Here is a surprise! Look at the result of our differential operator D acting on the exponential
function epx, Eq. �4.5�. The coefficient of �� is the same function that we see on the right hand
side of Eq. �C5�. So, here is a new identification:

�F�x�
�x�

= −
1

2
� F�x� . �C8�

APPENDIX D: CACULATING Dux

Here is a derivation of the last item in Eq. �8.5�, which is made easy if we take a geometric
perspective as we write the coordinate in four dimensions as x=x0+rux. Start by writing
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Dux = ��� + ���, �D1�

where � and � are to be determined. First, consider a displacement that has only ��: this should not
change ux at all, since such a displacement can only change x0 and r. Thus, we see that �=0.

Next, consider a displacement that has only ��: this should not change x0 or r. So we write

Dux = D�ux = D��x − x0�/r =
1

r
D�x =

1

r
��. �D2�

Following the result for F�2� in Sec. VIII, one may wonder whether the entire Taylor series might
be written as

F�x + �� = �
k=0

�
1

k!
DkF�x� = eDF�x� . �D3�

This may be readily verified for the functions F�x�=xn, starting with the equation

eDxe−D = x + � . �D4�

For the exponential function, define

Q�p� = eDepx, �D5�

then calculate dQ /dp and use Eq. �D4�.
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