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Computations in large N matrix mechanics
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~Received 21 July 1999; published 18 October 1999!

The algebraic formulation of largeN matrix mechanics recently developed by Halpern and Schwartz leads
to a practical method of numerical computation for both action and Hamiltonian problems. The new technique
posits a boundary condition on the planar connected partsXw , namely, that they should decrease rapidly with
increasing order. This leads to algebraic and/or variational schemes of computation which show remarkably
rapid convergence in numerical tests on some many-matrix models. The method allows the calculation of all
moments of the ground state, in a sequence of approximations, and excited states can be determined as well.
There are two unexpected findings: a larged expansion and a new selection rule for certain types of interac-
tions. @S0556-2821~99!02422-4#

PACS number~s!: 11.15.Pg, 11.15.Tk
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I. INTRODUCTION

LargeN matrix mechanics@1# differs from ordinary quan-
tum mechanics~QM! in that the canonical commutator

i @p,q#5I , ~1.1!

in the one-matrix case, is replaced by the relation

i @p,f#5u0&^0u ~1.2!

where u0& is the ground state in the reduced Hilbert spa
The original matrix-valued coordinatesf rs , r ,s51, . . . ,N,
are represented by the single operatorf in this reduced Hil-
bert space@2#.

The solution of the one-matrix largeN Hamiltonian prob-
lem with an arbitrary potentialV(f) was given some year
ago @3#, and only a couple of two-matrix problems in th
action formalism have previously been solved@4,5#.

The many-matrix problem involves severalnoncommut-
ing operatorsfm and their conjugate momenta. Followin
Halpern and Schwartz@6#, this system is described at equ
times by a symmetric free algebra which involves a p
~tilde and no tilde! for each Hermitian operator

@f̃m ,fn#5@p̃m ,pn#50, m,n51, . . . ,d ~1.3a!

i @p̃m ,fn#5 i @pm ,f̃n#5dmnu0&^0u ~1.3b!

f̃mu0&5fmu0&, p̃mu0&5pmu0& ~1.3c!

and the ground state energy is given by

E05N2^0u
1

2 (
m51

d

pmpm1V~f!u0& ~1.4!

where (f) refers to the set of operators$fm%. We shall use
the summation convention in what follows.
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In ordinary quantum mechanics systems of several in
acting bodies are most commonly attacked from the Sch¨-
dinger equation in coordinate space, using the direct prod
basisuq1 ,q2 , . . . ,qd&. That approach is not available in th
large N reduced Hilbert space because of the noncomm
tivity of the operatorsfm . A basis of states in this reduce
space may be written as

uw&[fwu0& ~1.5!

where we use the ‘‘word’’ notation for ordered products
operators

fw5fm1
fm2

•••fmn
, w5m1m2•••mn , mi51, . . . ,d

~1.6!

and we write@w#5n for the length of the wordw. See Ap-
pendix A for a collection of relevant definitions and form
las.

The new approximation technique presented in this pa
lies close to the Heisenberg~matrix! formulation rather than
the Schro¨dinger ~wave function! formulation and makes us
of the set of polynomialsTw(f) introduced in Ref.@7#:

@12bmfm1X~b!#215(
w

bwTw~f! ~1.7a!

X~b!5(
w

bwXw , X050, ^0uTw~f!u0&5dw,0

~1.7b!

where thebm are a dummy set of~noncommuting! param-
eters and the numbersXw were identified as the planar con
nected parts defined in earlier diagrammatic studies@8#.
Various properties of theseXw are given in Appendix A,
including their relation to the ordinary momentsZw
[^0ufwu0& of the ground state.

The core idea of the present work is to truncate the se
theseX’s,

set Xw50 for all @w#.n, ~1.8!
©1999 The American Physical Society10-1
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TABLE I. Xn andZn for the F5f3 action problem.

n 2 4 6 10 20

Xn .544331 2.0925926 .0403208 .0143736 2.00311591
Zn .544331 .500000 .544331 .816497 3.95996
Xn /Zn 1.00000 2.185185 .074074 .017604 .000787
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and solve the~now finite! set of algebraic equations, callin
this the ‘‘nth order approximation.’’ Then increasen, step by
step, and see whether the numerical results appear to
verge. This is an intuitive-experimental approach for no
since we have no mathematical proof that this method sho
work.

With even a small number of theX’s determined, one can
approximate all the moments of the ground state and
accuracy of these results increases systematically as one
ceeds to higher orders of approximation. The excited st
of a Hamiltonian system are also amenable to this meth

The recent algebraic developments by Halpern a
Schwartz@6,7# provide a wealth of formal definitions an
relations for many-matrix problems, unifying the study
both action and Hamiltonian systems. These start with
definitions of generalized creation and annihilation opera
in the reduced Hilbert space,

pmu0&5 iF m~f!u0&, ^0upm52 i ^0uFm~f! ~1.9a!

Bm5Fm~f!1 ipm , Bmu0&5^0uBm
† 50 ~1.9b!

BmBn
†5Emn~f! ~1.9c!

Emn~f!u0&52i @p̃n ,Fm~f!#u0&
~1.9d!

which is the interacting Cuntz algebra.@In the case of non-
interacting harmonic oscillators, we haveEmn}dmn and Eqs.
~1.9b!, ~1.9c! reduce to the original Cuntz algebra.#

In the practical work of this paper there is a basic distin
tion between the two types of problems. For action proble
we start out knowing the functionsFm(f) explicitly and this
lets us work directly with the algebraic equations for t
connected partsXw derived in Ref.@7# ~see Sec. V!. For
Hamiltonian problems we do not knowFm(f) beforehand
and so part of the method presented here involves a cons
tive representation of these operators, for which task we
the polynomialsTw(f) ~see Sec. VI!.

In Sec. II we test the idea on a simple example: a o
matrix action problem. In Sec. III we try to give some u
derstanding of why this method apparently works we
Counting of the variables in many-matrix problems and m
ing use of symmetry to keep things manageable is discu
in Sec IV, followed in Sec. V by some algebraic results fo
model action problem withd interacting matrices. The pla
of attack for many-matrix Hamiltonian problems is set out
Sec. VI and numerical results for a set of model potent
are presented in Sec. VII. We note not only the extrem
rapid convergence found in these examples but also an
expected selection rule. Section VIII presents more detail
10501
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this computational program, and a related method for ca
lating excited states is given in Sec. IX. Several appendi
discuss further details and possible extensions of this wo

II. FIRST TEST: ONE-MATRIX ACTION PROBLEM

We start with a simple problem: a one-matrix action
large N. As given in Ref. @7# for the quartic action (F
5f3), we have the following equation for the connect
partsXn :

X~X11!22b2X22
1

2
b450, X5 (

n.0
bnXn ~2.1!

which leads to the recursion formula

Xn5
1

2
dn,42 (

p52

n22

XpS (
q52

n2p22

XqXn2p2q12Xn2pD ,

n54,6, . . . . ~2.2!

For one-matrix problems we replace the word labelw by n
5@w#. We can compare this with the Schwinger-Dys
equations for the ordinary momentsZn5^0ufnu0&, which
may be written as

2Zn145 (
m50

n

ZmZn2m , Z051 ~2.3!

and only evenn enter because of the parity symmetry in th
problem. If we have the value ofX25Z2 @which we know
from other analysis to be (2/3)3/2#, then we can compute al
the higher ones from these recursion formulas. Table I sh
some numerical results and we see that the ratioXn /Zn de-
creases fairly rapidly asn increases.

Now we want to turn this process around and calculate
value ofX2 from the recursion formula~2.2! using the idea
that Xn should decrease rapidly at largen—a sort of bound-
ary condition. That is, we considerX2 as an unknown pa-
rameter and then search for that value that will allow us
truncate Eqs.~2.2! with Xn1250, and then we step up th
value of n and repeat the process. Table II contains the
sults of this computation and we see that the residual erro
each level of approximation decreases quite rapidly as
increasen.

We view this as a sort of eigenvalue problem for t
connected partsXn and recognize a certain similarity her
with the familiar procedure for numerical integration of th
one-dimensional Schro¨dinger equation in some given poten
tial. While that other problem involves a continuous variab
0-2
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TABLE II. ComputeX2 by truncation:Xn1250.

n12 4 6 8 10 20

Approx. X2 .500000 .534522 .541429 .543344 .54432
Error 2.044331 2.009809 2.002902 2.000987 2.000010
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c(x) obeying a linear~differential! equation our curren
problem involves a discrete setXn obeying a nonlinear~al-
gebraic! equation.

III. WHY SHOULD THIS METHOD WORK?

To understand what is going on here it may help to c
sider the ordinary moments

Zn5^0ufnu0&5E dqr~q!qn ~3.1!

for a one-matrix problem. TheseZn , for a typical ground
state densityr(q), are a rather monotonous sequence
numbers. The infinite set of coupled equations for these
ments ~Schwinger-Dyson equations in one language! con-
tains all the information about the ground state; but o
would not try to truncate this infinite system of equations
setting theZn equal to zero after some cutoffn5n* .

~In earlier work@9# on moment equations for the one- an
two-body Schro¨dinger equation, the asymptotic behavior
these moments asn→` was inferred from the differentia
equation for the wave function and this allowed a backw
iteration procedure.!

Now, by contrast, observe the definition of the planar c
nected parts, again for the one-matrix problem:

Xn115^0ufTn~f!u0&5E dqr~q!qTn~q! ~3.2!

where the polynomialsTn have the property

^0uTn~f!u0&50, n.0. ~3.3!

Clearly, theXn are just an algebraic combination of theZn .
But Eq. ~3.3! tells us that the polynomialsTn are oscillatory
within the domain of integration, and this suggests that
Xn , given by~3.2!, can be thought of as something like th
Fourier coefficients of the densityr(q). Therefore, if the
ground state is reasonably smooth and the polynomialsTn
are reasonably ‘‘appropriate,’’ then we would expect that
higher Fourier coefficients~the Xn) could decrease rapidly
This is the motivation to try a truncation scheme on theX’s.

A further advantage of theX’s is that they are directly
sensitive to the interactions in many-matrix problems.
Ref. @7# it was shown that in many-matrix problems witho
interactions, theXw vanish if there is any mixing of letters in
the wordw.

Once one has determined, approximately, even a s
number of theX’s, this allows one to give approximate va
ues forall of theZ’s in any one- or many-matrix problem b
use of the general algebraic relation~A2! between the gen
erating functions for these two sets of parameters.
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With these encouraging results, we go on to study
problems of many matrices in largeN action and Hamil-
tonian systems.

IV. MANY MATRICES: COUNTING THE VARIABLES

With d matrices, the number of words of lengthn is dn

and this number grows very rapidly. If we have some sy
metries in the action or the Hamiltonian, then we can red
the number of independent variablesXw that we have to
handle at each level of approximation. In this paper we c
sider model problems with the following invariance prope
ties of the ground stateu0&.

Parity symmetry. Change the sign offm ~andpm) for any
m.

Permutation symmetry. Make any permutation among th
d labelsm,n, . . . .

In addition, there is the general invariance of theXw ~as of
the trace operation in the unreduced space! under a cyclic
permutation of the letters in the wordw.

With these conditions, the number of independentXw’s is
greatly reduced—to what we shall call a set of ‘‘bas
words’’ at each leveln—as shown in Table III.

At each level of approximation~signified by the maxi-
mum word lengthn) we shall deal with a number of basi
words~the dimensionD of our parameter space!. From Table
III we read off these dimensions: ford52, D
51,4,8,20,48, . . . ; for d53, D51,4,13,54, . . . ; for d55,
D51,4,13,72, . . . ; for d59, D51,4,13, . . . . Thefirst task
of the computer program is to make a table of alldn words at
eachn, identify each word with an equivalence class acco
ing to the symmetries described above and assign one m
ber of each class as a basic wordwi , i 51, . . . ,D.

V. MANY-MATRIX ACTION PROBLEMS

A. General algebraic machinery

For action problems, we have the dual basis system
equations derived by Halpern and Schwartz@7#:

TABLE III. Count of dn→ basic words.

n d52 d53 d55 d59

2 4→1 9→1 25→1 81→1
4 16→3 81→3 625→3 6561→3
6 64→4 729→9 15625→9 531441→9
8 256→12 6561→41 390625→59

10 1024→28 59049→257
12 4096→94
0-3
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CHARLES SCHWARTZ PHYSICAL REVIEW D60 105010
Bm
† 5Gm~f!2Emn~f!B̄n , fm5B̄m@11X̄~B†!#

~5.1a!

X̄~B†!5(
w

Xw̄B†w5(
w

XwB†w̄. ~5.1b!

Here, the operatorsB̄m ,Bm
† obey the simple Cuntz algebra

B̄mBn
†5dmn ~5.2!

and the role of these operators is to generate an infinite s
coupled algebraic equations for the connected partsXw , as
will be shown by example below. The functionsGm52Fm
andEmn , defined earlier in Eqs.~1.9a!, ~1.9d!, are immedi-
ately known once we specify the actionS. Then we shall
proceed with the sequence of truncation approximatio
generalizing the one-matrix example of Sec. II.

B. Model problem

We take for our model problem here thed-matrix action

S52
1

4N (
m,n51

d

Tr~@fm ,fn# !2 ~5.3!

in the unreduced Hilbert space. This gives us the redu
operators

Gm~f!5 (
nÞm

~fmfnfn1fnfnfm22fnfmfn!

~5.4a!

Emm~f!5 (
nÞm

~fnfn1Xnn! ~5.4b!

EmÞn~f!5fmfn22fnfm ~5.4c!

where we note that thisS has the symmetries mentioned
the previous section and this leads to the simplificationsXm
50, Xmn5dmnX11.

Equations~5.1a! now look like

Bm
† 5 (

nÞm51

d

$~B̄nB̄nB̄mX̄1B̄m~B̄nB̄nX̄2X11!22B̄nB̄mB̄nX̄!

1~B̄nX̄B̄nB̄mX̄1B̄mX̄B̄nB̄nX̄22B̄nX̄B̄mB̄nX̄!

1~B̄nB̄nX̄B̄mX̄1B̄mB̄nX̄B̄nX̄22B̄nB̄mX̄B̄nX̄!

1~B̄nX̄B̄nX̄B̄mX̄1B̄mX̄B̄nX̄B̄nX̄22B̄nX̄B̄mX̄B̄nX̄!%.

~5.5!

This system of equations is equivalent to the Schwing
Dyson set of equations but it is packaged to emphasize
role of theX’s and it leads directly to our sequence of a
proximations. The first line of terms in Eq.~5.5! has only one

X̄ and its first few terms are
10501
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~Xmnnp1Xnnmp22Xnmnp!Bp
†

1~Xmnnpqr1Xnnmpqr22Xnmnpqr!Br
†Bq

†Bp
† ~5.6!

where the usual constraint on the sum (nÞm) is understood.

The second and third lines have twoX̄’s and their first few
terms are

2X11XmpBp
†1~2X11Xmpqr1XnpXmnqr1XmpXnnqr

22XnpXnmqr1XnnpqXmr1XnmpqXnr

22XmnpqXnr!Br
†Bq

†Bp
† ~5.7!

and the fourth line, with threeX̄’s, starts off as

~XnpXnqXmr1XmpXnqXnr22XnpXmqXnr!Br
†Bq

†Bp
† .

~5.8!

Collecting the linear terms inB† gives us the equation

152~d21!~X11222X12121X11
2 ! ~5.9!

where we have used the symmetry properties to list the b
words: (11) atn52 and (1111),(1122),(1212) at n54.
This equation is exact and leads to our lowest~second! order
approximation: we set allX’s with word length greater than
2 equal to zero and we get

X11.1/A2~d21!. ~5.10!

Next, we collect the cubic terms inB†. For our fourth
order approximation we drop allXw’s with @w#.4:

05X11$~2d221emp1emr!Xmpqr22empXmqrp

22emrXmrpq1~dmpdqr1dmrdpq!@~d21!X11221X1111

2Xmmqq#%1X11
3 @dpqdmremp1dqrdmpemq22dprdmqemp#

~5.11!

whereepq512dpq . These equations are now evaluated
varying choices of the labelsm,p,q,r , which must be paired
We find

X11111X112250 for m5p5q5r ~5.12a!

X111113~d21!X112222X12121X11
2 50 for m5pÞq5r

~5.12b!

2X11222dX12121X11
2 50 for m5qÞp5r .

~5.12c!

The solution of this set of equations~for dÞ2) is

X111152X11225
1

3
X12125

1

3d12
X11

2 ~5.13!

and, putting these results back into Eq.~5.9!, we find the
fourth order approximation forX11:
0-4
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X11.F2~d21!S 12
4

3d12D G21/2

. ~5.14!

For d52, Eqs.~5.12! are indeterminate, but for this cas
a scaling argument leads to the conclusion that the syste
not bounded.

It was very pleasing to find, in the fourth order calculati
above, that the number of independent equations was
equal to the number of unknowns and we found a uniq
solution. Will this circumstance continue at higher orders
approximation? I have no general answer.

One should program a computer to carry the above
quence of approximations to higher order; only algebr
work is required at each step. I have not done this yet, giv
priority to the more difficult Hamiltonian problems, reporte
in Sec. VI.

C. Large d expansion

From the result above one is led to speculate that
truncation sequence of approximations may be related
‘‘large d’’ expansion. The algebraic calculations describ
above have been carried out to the sixth order, with 9 eq
tions in 9 unknowns, and solved in the approximation t
d@1. This leads to the following result:

~X11!
2252~d21!F12

4

3d12
2

185

81d2
1O~d23!G .

~5.15!

We do not have a systematic theory of such a largd
approximation but the following crude attempt may be
structive. Look back at the formula forGm , Eq. ~5.4a!, and
replace the operator pairfnfn by its ground state average
which is X11. This butcheredGm is then

Gm;2vfm , v5~d21!X11 ~5.16!

which is the formula for a system of noninteracting harmo
oscillators. The oscillator resultXmn5dmn /(2v) then gives
immediately the leading term in Eq.~5.15!. The higher order
terms in 1/d are then expected to come from a perturbat
theory expansion about this oscillator approximation. Also
one looks at the computer results for the Hamiltonian pr
lems~Sec. VII!, one may discern a suggestion of more rap
convergence for larger values ofd.

VI. MANY-MATRIX HAMILTONIAN PROBLEMS

A. Choosing the model problems

We shall study the Hamiltonians ford bosonic matrices,
given in the unreduced Hilbert space as

H5
1

2 (
m51

d

Tr~pmpm!1N TrFVS f

AN
D G ~6.1!

with the following choices of the potential:
10501
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V1~f!5
1

4 (
m51

d

fm
4 ~6.2a!

V2~f!5
1

4 S (
m51

d

fm
2 D 2

~6.2b!

V3~f!5
1

4 (
m,n51

d

fm
2 fn

2 ~6.2c!

V4~f!52
1

8 (
m,n51

d

@fm ,fn#2

~6.2d!

or, if desired, any linear combination of them. The first p
tential, which is just the non-interacting case, is used
verification of the computational procedure. The third a
fourth potentials have ‘‘flat directions,’’ which make them
particularly interesting. ~Will the calculations converge
nicely, indicating a bound state, or will they not?! All four
potentials have the symmetries~parity and permutation! de-
scribed in Sec. IV. The additional SO(d) symmetry ofV2
and V4 is not used at the outset but will be noted in t
results.

The following subsections outline the method and furth
details are given in Sec. VIII and in Appendixes A and B

B. Construction of F m„f…

A central construct of our previous work@6,7# is the re-
duced operatorFm(f), defined in Eq.~1.9a!. We will repre-
sent this quantity by a finite linear expansion in the polyn
mials Tw(f),

Fm~f!5(
w

Rw
(m)Tw~f!, ~6.3!

at each level of approximation and then see how to de
mine the coefficientsR. ~See Sec. VIII A for more details.!.

For any reduced operatorA which depends on thef ’s one
has the identity

2^0uA~f!Fm~f!u0&5^0u i @p̃m ,A~f!#u0& ~6.4!

which is proved using the definitions~1.9a! and ~1.3c!.
ChoosingA5Tw8 and using the formulas~A7! and ~1.7b!
this gives

^0uTw8~f!Fm~f!u0&5
1

2
dw8,m ~6.5!

for any wordw8. We impose these relations on the appro
mate expansion~6.3! and obtain

(
w

Kw8,wRw
(m)5

1

2
dw8,m ~6.6!

where
0-5
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Kw8,w[^0uTw8~f!Tw~f!u0&. ~6.7!

This matrixK is numerically evaluated in terms of theX’s,
as detailed in Appendix B, and then we determine the exp
sion coefficientsR from a straightforward matrix inversion
calculation. Of course, we make this a square~and positive!
matrix, as detailed in Eqs.~8.5!, ~8.6!. This completes the
first part of the fitting problem, which we would term th
kinematic part since it assures that we are doing our bes
any given level of approximation, to represent the basic co
mutator algebra~1.3b!.

Now we turn to the second part, which involves the d
namics of any particular Hamiltonian.

C. Minimizing the energy

The kinetic energy of the ground state can be expresse

K.E./N25
1

2
^0upmpmu0&5

1

2
^0uFmFmu0&

5
1

4
^0u i @p̃m ,Fm#u0&5

1

4
Rm

(m)5
d

4
R1

(1) ~6.8!

using the methods and results of the previous subsectio
The potential energy of the ground state is expressed

rectly in terms of theX’s using Eq.~A3b!:

^0ufm
4 u0&5X111112X11

2 ~6.9a!

^0ufm
2 fn

2u0&5X11221X11
2 , mÞn

~6.9b!

^0ufmfnfmfnu0&5X1212, mÞn ~6.9c!

where we have used the specified symmetries to write th
formulas in terms of the four basic words at the second
fourth orders.

TABLE IV. Calculated values ofE/d for potentialV2.

n D d52 d53 d55 d59

2 1 .429 .472 .5408 .6412
4 4 .42672 .47035 .53921 .64007
6 8,13 .426672 .4703152 .539189 .6400
8 20,54 .42667093 .47031461

10 48 .426670885

TABLE V. Calculated values ofX11 for potentialV2.

n D d52 d53 d55 d59

2 1 .437 .397 .347 .292
4 4 .4428 .4010 .34912 .29365
6 8,13 .443007 .401106 .349171 .29366
8 20,54 .4430170 .4011103

10 48 .44301744
10501
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We program the computer to evaluate the ground s
energyE5E0 /N2 at thenth order approximation with any
assigned numerical values for the quantitiesXw for @w#<n.
The final step of this scheme is to vary this set ofX’s so as
to minimizeE. This procedure is without mathematical ju
tification; it just seems like the natural thing to do.

What is more, this part of the method is far from straigh
forward as a computational task because the energyE is a
very nonlinear function of the many variablesX. In Sec.
VIII B we describe the techniques used to search for t
minimum. The numerical results are presented next.

VII. NUMERICAL RESULTS

The tables that follow give the outputs of the compu
tions and are designed to show at a glance the converg
of the approximation scheme described above.

Table IV shows the energy (E/d) calculated for the po-
tential V2, for several values ofd and at several levels o
approximation, and Table V gives the corresponding val
of X115^0uf1

2u0&.
We note how rapidly these numbers converge as one g

down each column in the tables. For each step increasing
order of approximation, we see aone or two orders of mag-
nitude increase in accuracy, somewhat better forE than for
X. Also, one sees in these tables that the first approxima
~a ‘‘back of the envelope’’ computation! is accurate to abou
1%. Such is the power of theX. For comparison, Table VI
presents results for the one-matrix problem,d51 and V1,
computed by the same program. We see that the result
the many-matrix computations~above! converge about as
rapidly as the one-matrix results, although the amount
work required to obtain the former is much greater.

Table VII gives theE/d results computed for the potentia
V3 and one sees rapid convergence here as well.

In Table VIII we see the results for the potentialV4,
which has the greatest amount of ‘‘flat directions’’ amo
our models. Here the rate of convergence is noticea

TABLE VI. Computed results for the one-matrix problem:V1.

n D E X11

2 1 .375 .50
4 2 .3717 .5100
6 3 .371638 .51057
8 4 .3716339 .510611

10 5 .37163373 .5106136

TABLE VII. Calculated values ofE/d for potentialV3.

n D d52 d53 d55 d59

2 1 .236 .298 .375 .4725
4 4 .2312 .29470 .373207 .471358
6 8,13 .231036 .294625 .3731823 .471349
8 20,54 .2310258 .29462242

10 48 .23102504
0-6
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slower than in the previous models, but still looks convin
ingly good.

Also, in the several tables above, one sees a suggestio
more rapid convergence for larger values ofd; see the dis-
cussion of the larged expansion in Sec. V C.

In another experiment, we studied the one-matrix probl
with potential

V~f!5
1

2
f22

g

4
f4 ~7.1!

as the parameterg approached the valueA8/3p where the
bound state disappears. The numerical procedure searc
to minimize the energy worked well until one approach
very close to this critical value; then it failed dramatically

OtherXw values are also produced in these computatio
albeit with a somewhat lesser accuracy. Table IX has so
of these for the potentialV2.

If there is rotational symmetry in the ground state, o
can derive the following relation among the fourth orderX’s,

X111152X11221X1212 ~7.2!

and the data in Table IX satisfy this relation, as does
corresponding data for the potentialV4, which is also rota-
tionally invariant.

There is another, unexpected, phenomenon seen in
data of Table IX: namely, thatX121250. An increasing num-
ber of otherXw’s also vanish when one looks at higher o
ders. This result also appears for the potentialV3, but not for
V4. When a particularXw goes to zero, so does the corr
sponding coefficientRw . The empirical rule is this: Write
out the wordw and remove any pair of matching adjace
letters; repeat this process; theXw will vanish unless this
process can reduce the original word to null. I do not hav
full explanation for this newly discovered selection rule b
it appears to be related to the fact that these potentials@see
Eqs. ~6.2b! and ~6.2c!# involve only pairs (fmfm) of each
operator. This new symmetry is particular to largeN matrix
mechanics with its noncommuting coordinate operators
would not arise in ordinary quantum mechanics.

TABLE VIII. Calculated values ofE/d for potentialV4.

n D d52 d53 d55 d59

2 1 .24 .30 .38 .47
4 4 .224 .289 .370 .4690
6 8,13 .2232 .2890 .36944 .46894
8 20,54,72 .22299 .28895 .369431

10 48 .222964

TABLE IX. Computed values of some otherXw for V2.

Xw d52 d53 d55 d59

X1111 -.0132659 -.0082358 -.004201 -.00179
X1122 -.0066329 -.0041179 -.002101 -.00089
X1212 0.0 0.0 0.0 0.0
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From an experimental~numerical! perspective, but lack-
ing any formal proof, it appears that these types of largeN
problems are now solvable. It will be important for others
repeat this work independently in order to verify these
sults.

VIII. DETAILS OF THE COMPUTATIONAL PROGRAM

A. Full F m

The expression~6.3! for Fm(f) needs to be refined. Th
motivation for what follows comes from Appendix E in Re
@6# where the ground state wave function~the action! is mod-
eled and one sees the consequent structure ofFm(f).

Corresponding to each basic wordwi we want to have a
group of terms@in the Tw(f)# with a common coefficient
Ri

(m) :

Fm~f!5(
i 51

D

Ri
(m)Fm,i~f!. ~8.1!

For the first stage in this construction we define

]mTw~f![ (
w;mw8

Tw8~f! ~8.2!

which, one can show, will guarantee that the flatness co
tion @6#

@p̃m ,Fn~f!#2@pn ,F̃m~f!#50 ~8.3!

is satisfied.
For the second stage we take all permutations among

m51, . . . ,d letters that occur in the basic wordswi .

Fm,i~f!5
1

c~wi !~d21!!
]m (

perm8s

permute Twi
~f!

~8.4!

where the constantc(w), the number of subcycles in th
word w, is defined in Appendix A. The normalization con
stants used above are convenient but not essential.

Now we construct the matrix elements

t i , j5^0uFm,i
† ~f!Fm, j~f!u0& ~no sum! ~8.5!

where these are linear combinations of theKw,w8 defined in
Eq. ~6.7! and Eq.~6.6! is replaced by

(
j 51

D

ti , jRj
(m)5

1

2
d i ,1 , i 51, . . . ,D. ~8.6!

In order to save computing time in evaluating eacht i , j it is
important to find and to count repeated evaluations of
sameK elements. I am not sure that I have done this j
completely in my program.

B. Searching

The hardest part of this program is searching for the m
mum energy in the parameter space of the basic word c
0-7
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nected parts:Xwi
[xi , i 51, . . . ,D. The first method used

fits a quadratic function toE(x) evaluated atD(D11)/2
nearby points and then finds the extremum:

bi5E~xi1d!2E~x!,

ai , j5E~xi1d,xj1d!2E~x!2bi2bj ~8.7a!

(
j 51

D

ai , jv j5bi2
1

2
ai ,i , xi85xi2dv i . ~8.7b!

If one is close enough to the minimum, iterating this proc
dure should converge rapidly. For most of the data prese
in Sec. VII this method worked, although I am sure that m
sophisticated techniques could have been more efficient.
the largest size computation carried out (d55, n58, D
572) the time for each evaluation of the energy was abo
min and each iteration of this search procedure took abou
h on a common desktop microcomputer.

Sometimes, however, this approach failed. For the po
tial V4, beyond the sixth order calculation~for d52 andd
53) this method diverged or led to impossible output~see
the next subsection!. What succeeded in those cases wa
second method: start by solving the numerical problem
some other potential~like V3 where the first search metho
worked well! and then gradually change a coupling const
g inserted into the potential and solve again, repeating
small steps until one arrives at the desired result. At e
new step one can start efficiently with a sort of perturbat
theory

(
j 51

D

ai , jD j5d2
]2E~x!

]g]xi
, xi85xi2~dg!D i ~8.8!

which involves the matrixai , j , Eq. ~8.7a!, which one has
already calculated at the previous step.

Just because the numerical search appears to conver
no proof that we have found the correct solution. In work
the potentialV4 for d52 we had some results at the six
order (D58) which first appeared well converged by th
first searching method, but a later check on the rotatio
symmetry~7.2! showed that this was a false solution. R
peating this calculation using the second search method
scribed above led to satisfactory results. The fact that
false energy value was off only in the fifth decimal pla
stands as a cautionary note on this new numerical techni

Another numerical searching procedure is suggested
the algebraic work in Sec. V. One could vary only the sub
of Xw’s with @w#5n* , keeping all others fixed, then cycl
through the choices ofn*.

It should be repeated that this is all experimental wo
that is in need of sound mathematical justification and gu
ance. The multidimensional energy surfaceE(x) is a very
complicated nonlinear function of the parametersx. In fact,
there are singularities which may lie not far away from t
desired minimum. One can see the simplest example of
situation in the 232 matrix equation~8.6! for thed51 case.
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C. Constraints

The quantitiesXw cannot be regarded as completely ind
pendent variables. For example, in the one-matrix case
has

^0u~f22^f2&!2u0&>0 ~8.9!

which leads to the inequalityX4>2(X2)2.
Using the general Schwarz inequality, we can write

u^0uTwTw8u0&u2<^0uTw̄Twu0&^0uTw8̄Tw8u0& ~8.10!

for all wordsw andw8. This implies many constraints upo
the allowed values of theX parameters as we search to min
mize the energy. It is unclear how best to implement th
constraints; in the computations reported here I only chec
that the matrix~8.5! satisfied

ut i , j u2<t i ,i t j , j , t i ,i.0 ; i , j ~8.11!

at each evaluation. A failure of this test signals that t
search has strayed into forbidden territory.

An entirely different sort of constraint comes from the u
of a purely real~rather than complex! representation for the
f operators. This implies that we should haveXw5Xw*
5Xw̄ . With the extensive symmetry of the problems studi
here many of these constraints are automatic, but at the
order ford52 and at the 8th order ford.2, one finds some
basic words that do not satisfyw̄'w. Rather than imposing
this constraint, we are satisfied to find that this equa
comes out in the numerical results.

IX. EXCITED STATES

After the ground state problem is solved, we consid
excited~adjoint! states in the reduced Hilbert space:

Hu0&5E0u0&, HuE&5EuE& ~9.1!

where it should be remembered that we do not know
form of the reduced HamiltonianH @6# but only that it gen-
erates time translations. With the postulate

uE&5Uu0& ~9.2!

for some operatorU we find the identity

~E2E0!^0uU†Uu0&52 i ^0uU†U̇u0&. ~9.3!

Now we make the construction, as withF before,

U5(
w

r wTw~f!, U†5(
w

r w* Tw̄~f! ~9.4!

and we have, using Eq.~A9!,

U̇5(
w

r w (
w5w1mw2

Tw1
pmTw2

~9.5!

where ther w are as yet undetermined constants.
We can now write Eq.~9.3! as
0-8
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E2E05S (
w,w8

r w* Lw̄,w8r w8D Y S (
w,w8

r w* Kw̄,w8r w8D
~9.6!

where the matrixKw,w8 was defined earlier and from Eq
~A10! we have

Lw,w8[2 i ^0uTwṪw8u0&5
1

2 (
w5umv

(
w85u8mv8

Ku,v8Ku8,v .

~9.7!

Finally, vary the coefficientsr to find stationary values o
Eq. ~9.6! and we get a traditional linear matrix problem
whereE2E0 is an eigenvalue of the matrixL with respect to
the metric matrixK.

The evaluation of the matrixK and thus also ofL is done
entirely in terms of theXw’s, which were already solved with
the ground state problem. Thus~although I have not done
any explicit numerical calculations for excited states! the
complete spectrum ofH can be calculated. The lowest ord
approximation,U5Tm(f), givesEm2E051/(2Xmm).
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APPENDIX A: USEFUL FORMULAS OLD AND NEW

Further conventions on the word notation are the follo
ing:

w50 is the null word.
w5m means that the wordw consists of a single letterm.
w;w8 means that the two words differ by at most a c

clic permutation of their letters.
w'w8 means that the two words are equivalent un

some larger symmetry.
w1w25w3 means that the second word is appended to

first word and the result is the third word.
w5umv means that the wordw is decomposed as indi

cated.
w̄ is the word formed by reversing the sequence of lett

in the wordw.
c(w), the number of subcycles in the wordw, is defined

as the largest integerk such thatw5uk for any wordu with
@u#.0.

Basic relations amongT(f) andX are the following@7#:

Tmw5fmTw2 (
w5w1w2

Xmw1
Tw2

~A1a!

Twm5Twfm2 (
w5w1w2

Tw1
Xw2m ~A1b!

Xmw5^0ufmTwu0&5^0uTwfmu0&5Xwm ~A1c!

Tw
† 5Tw̄ , Xw* 5Xw̄ . ~A1d!
10501
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The relation betweenX andZ is the following:

Z~ j !511X„jZ~ j !…. ~A2!

Examples~for the case of parity symmetry, which means th
each letter must appear an even number of times or else
Z andX vanish! are the following:

Zmn5^0ufmfnu0&5dmnXmm ~A3a!

Zmnpq5Znpqm5H Xmmmm12Xmm
2 if m5n5p5q,

Xmmpp1XmmXpp if m5nÞp5q,

Xmnmn if p5mÞn5q.
~A3b!

For one-matrix problems the labelw is replaced byn5@w#.
For systems with the parity selection rule,

T051, T15f, T25f22X2 , X25^f2& ~A4a!

T35f322fX2 , T45f423f2X22X41X2
2

~A4b!

X45^f4&22X2
2 , X65^f6&26X4X225X2

3 . ~A4c!

Below are some new relations involvingT(f) that are
used in the present work. Start with the generating funct

Y51/~12bmfm1X~b!!5(
w

bwTw~f! ~A5!

and calculate the commutator

i @p̃m ,Y#5Ybmu0&^0uY. ~A6!

Now expand in powers ofb and match terms to find

i @p̃m ,Tw~f!#5 (
w5w1mw2

Tw1
~f!u0&^0uTw2

~f!. ~A7!

The other version of this relation,

i @pm ,T̃w#5 (
w5w1mw2

T̃w2
u0&^0uT̃w1

, ~A8!

comes from Eq.~D.11! in Ref. @7#. In a very similar way one
gets the time derivative equation

d

dt
Tw~f!5 (

w5w1mw2

Tw1
pmTw2

~A9!

where we have used (d/dt)fm5pm . Combining the last
two equations leads to

i ^0uTw8

d

dt
Twu0&52

1

2 (
w5umv

(
w85u8mv8

^0uTuTv8u0&

3^0uTu8Tvu0& ~A10!

which is surprisingly simple.
0-9
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APPENDIX B: EVALUATING ŠTwTw8‹

We seek some recursive procedure for evaluation of
matrix elements

Kw,w85^0uTw~f!Tw8~f!u0&5Kw8,w ~B1!

in terms of the connected partsXw . Using Eqs.~A1a! and
~A1b! it is relatively easy to find the following relations:

Kwm,w85Kw,mw81 (
w85uv

XmuKw,v2 (
w5uv

XvmKu,w8

~B2!

with the boundary counditionsKw,05K0,w5dw,0 . This looks
very nice as a recursive computer program but it turns ou
be expensive: the time required grows exponentially as
increases the size of the words. One could save time
building a table of all theK matrix elements one might need
but that requires enormous amounts of space.

An alternative method is given by the following formul

Kw,w85 (
w5uv

(
w85u8v8

Ku,v8Xvu8 ,

@v#.0, @u8#.0, K0,051 ~B3!

which may be derived by combining Eq.~A1a! with the ex-
pansion

fm5(
w

XmwGw̄~f! ~B4!

from Ref. @7# and also using the identity

^0uTwTw8Gw̄9u0&5 (
w95uv

^0uTw1
Tw2

u0&dw,uw1
dw8,w2v

~B5!

which is similar to the Ward identities derived in Append
E of Ref. @7#.

The program uses Eq.~B3! to build a small table ofK ’s
each time one of them is called for and the time for t
grows asn4 rather than exponentially. Still, this is the ma
time consuming part of the computations.

APPENDIX C: SOME ALTERNATIVE COMPUTATIONAL
SCHEMES

One alternative scheme is to start out by fitting the qu
tity Emn(f) instead ofFm(f):

Emn~f!5(
w

Rw
(mn)Tw~f!. ~C1!

The definition~1.9d! is

Emn~f!u0&52i @p̃n ,Fm~f!#u0& ~C2!

and using Eq.~A7!, we find
10501
e

to
e
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Rw
(mn)52Rwn

(m) ~C3!

upon comparison with Eq.~6.3!. Next, we use the forma
expansion from Ref.@7#,

~E21!mn5(
w

XwmnGw̄~f!, ~C4!

to write the system of conditions

^0uTw8~Emn~E21!np2dm,p!u0&50 ~C5a!

(
w,w9

Xnpw9^0uTw8TwGw̄9u0&Rwn
(m)5

1

2
dm,pdw8,0 ~C5b!

and one can show, using Eq.~B3!, that this reduces to equa
tions identical to Eq.~6.6!. So this method is not an alterna
tive at all.

A second alternative scheme does away with minimiz
the energy and works instead from the equations of mot

ṗmu0&5 i Ḟ m~f!u0&52Vm8 ~f!u0&. ~C6!

Using the representation~6.3! for Fm , this leads us to a new
system of equations

2 i(
w

^0uTw8Ṫwu0&Rw
(m)5^0uTw8Vm8 u0& ~C7!

where the matrix elements on the left side are the quant
Lw8,w defined in Sec. IX. One now hastwo sets of matrix
equations—Eqs.~6.6! and~C7!—determining the same set o
expansion coefficients: call the solutionsR and R8. One
would now seek a set of values for the parametersXwi

that
would make these two sets of solutions the same. Comp
tionally, the way to do this would presumably be to minimi
the error,

error5(
i

uRi2Ri8u
2, ~C8!

and this defines another nonlinear search procedure.
what weight function ought optimally to be put into this err
calculation?

A third alternative is to use the monomialsfw instead of
the polynomialsTw(f) as a basis for the fitting of the op
eratorsFm or U. This leads to much simpler formulas for th
matrix elements ofK and L, expressed in terms of the mo
mentsZw5^0ufwu0&. Then one would use the relation~A2!
to evaluate eachZw in terms of the chosen set of paramete
Xw . I believe that this approach has drawbacks in both sp
and numerical accuracy, but it should be explored.

APPENDIX D: IS THIS METHOD USEFUL
IN ORDINARY QM?

With the apparent success of this approximation meth
in large N matrix mechanics, one goes back to ordina
quantum mechanics to see if we have a new useful calc
tional technique. The formalism developed in Ref.@7# is eas-
0-10
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ily modified to fit the standard commutation relation

i @pi ,qj #5d i j I ~D1!

with the following construction:

Y5eb i qi2X(b)5(
m

Tm~q! ~D2a!

X~b!5(
m

CmbmXm ~D2b!

Z~b!5^0ueb i qiu0&5(
m

Cmbm^0uqmu0&. ~D2c!

Herem represents the unordered set of occupation num
$m i% ~remember that theqi ’s commute with one anothe
now! and

Cm51/)
i

~m i !!. ~D3!

In the simple one-matrix case we have

Z~b!5 (
n50

`

bnZn /n!, Zn5^0uqnu0&5E dqqnr~q!

~D4a!

X~b!5 (
n51

`

bnXn /n! 5 ln@Z~b!# ~D4b!

and we want to test whether the ratioXn /Zn decreases rap
idly with n, as we saw for the largeN situation in Sec. II. For
the case of a harmonic oscillator, we have the same resu
both theories; namely,Xn vanishes forn.2.

One simple~non-oscillator! model that allows analytic
calculations is a constant densityr(q) over some finite range
in

10501
rs

in

of q. Here we find that the ratioXn /Zn decays rapidly with n
for the largeN situation but this ratio grows very rapidly fo
the ordinary quantum mechanics situation.

We have also applied the method of this paper to
quantum mechanical nonlinear oscillator,

H5
1

2
p21

1

4
q4. ~D5!

Numerical results for the ground state are shown in Table
The convergence seen here is fairly good, although no
good as for the similar largeN problem, shown in Table VI.
~The accuracy shown here is comparable to that obtai
with conventional variational calculations of this Schr¨-
dinger equation, at the same levels of approximation.!

It must be reported, however, that the results shown
Table X were not obtained easily. The problem of near
singularities in the energy surface, mentioned in Sec. VIII
was more severe in this ordinary quantum mechanics p
lem than in the largeN problems. For the calculation
throughD53, I used the second searching method, start
from the harmonic oscillator and then moving gradually
the quartic potential in steps of size 1/8. ForD54, I had to
decrease the step size to 1/16, and forD55, I gave up after
failing in the search procedure with step size 1/32.

In conclusion, I am still in doubt about the answer to t
question posed in the heading of this appendix.

TABLE X. Results for the Schro¨dinger equation~D5!.

n D E X11

2 1 .429 .437
4 2 .4217 .4525
6 3 .4210 .45512
8 4 .42086 .45571
e
s.
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