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We find an infinite-dimensional free algebra which lives at large N in any SU(N)-
invariant action or Hamiltonian theory of bosonic matrices. The natural basis of this
algebra is a free-algebraic generalization of Chebyshev polynomials and the dual basis
is closely related to the planar connected parts. This leads to a number of free-algebraic
forms of the master field including an algebraic derivation of the Gopakumar–Gross
form. For action theories, these forms of the master field immediately give a number of
new free-algebraic packagings of the planar Schwinger–Dyson equations.

1. Introduction

Recently,1 we have studied the algebras of phase-space master fields in general

matrix models, obtaining in particular a number of new free algebras which

generalize the Cuntz algebra. Among these generalizations, our starting point in

this paper is the set of interacting Cuntz algebrasa

Bm =
√

2Am = Fm(φ) + iπm ,

B†m = Fm(φ)− iπm , (1.1a)

Emn(φ) = 2Cmn(φ) ,

∗E-mail: halpern@physics.berkeley.edu
aCertain powers of

√
2 are scaled out here relative to the operators A and C of Ref. 1.
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BmB
†
n = Emn , (1.1b)

B†m(E−1)mnBn = 1− |0〉〈0| , (1.1c)

Bm|0〉 = 〈0|B†m = 0 , m, n = 1 · · ·d (1.1d)

which occur at large N in general bosonic matrix models, and may also occur in

matrix models with fermions. The fields φm and πm are the master field and the

reduced momenta respectively, and the operators Fm and Emn are determined by

the potential. The Cuntz algebra is the special case of (1.1) obtained in the case of

matrix oscillators.

In the present paper, we will generalize these algebras in two directions. First, we

recall that the “fifth-time” formulation (see for example Ref. 2) maps any Euclidean

action theory into a higher-dimensional theoryb with a Hamiltonian formulation.

This allows us to read Ref. 1 as a unified free-algebraic treatment of action and

phase-space master fields (see Sec. 2). The unified formulation includes and extends

Haan’s6 early free-algebraic formulation of action master fields, and one sees in

particular that the interacting Cuntz algebra (1.1) occurs in the same way for

action and phase-space master fields. The operators Fm and Emn of the algebra

(1.1) are straightforward to compute explicitly for the action case.

The second direction is the main subject of this paper. For action and/or phase-

space master fields, the interacting Cuntz algebra can be extended to an infinite-

dimensional free algebra (see Secs. 3–6), whose structure, especially in the action

case, controls the large N theory. The annihilation operators of this algebra are

defined as composites of the interacting Cuntz operators

Bw = Bw = Bm1 · · ·Bmn , w = m1 · · ·mn , [w] = n , (1.2a)

Bw̄ = Bw̄ = Bmn · · ·Bm1 , w̄ = mn · · ·m1 , [w̄] = n , (1.2b)

where w is any word, composed of letters mi, and [w] is the length of w. When a

word w is written as a subscript it is a label but when written as a superscript it

is to be read as an exponent, producing an ordered product, as in (1.2a). The null

word is 0, with [0] = 0 and B0 = 1. This word notation, and the rule

ww′ = m1 · · ·mnm
′
1 · · ·m′n′ , [ww′] = [w] + [w′] (1.3)

will be followed uniformly below.

Surprisingly, the composite annihilation operators (1.2) and the corresponding

creation operators turn out to be linear in the reduced momenta πm,

Bmw = Fmw(φ) + iπmGw(φ) , B †
mw = Fmw(φ)† − iGw̄(φ)πm (1.4)

and this fact underlies the simple form of the infinite-dimensional free algebra below.

The operators Gw and Fw can be obtained in terms of Fm and Emn (see Sec. 3),

bIn an evident parallel with the AdS/CFT correspondence,3–5 the fifth-time formulation also gives
the large N action theory as a classical solution of the higher-dimensional theory (see Subsec. 2.1
and App. A).
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and Gw, Fw turn out to be free-algebraic generalizations of Chebyshev polynomials

(see Subsecs. 3.2 and 3.3).

The infinite-dimensional free algebra is then

BwBw′ = Bww′ , B †
w B

†
w′ = B †

w′w , (1.5a)

B †
mw Bnw′ = Gw̄mBnw′ −Gw̄Bmnw′ , (1.5b)

B †
mw (E−1)mnBnw′ = B †

w Gw′ +Gw̄Bw′ −Gw̄w′ −Gw̄|0〉〈0|Gw′ , (1.5c)

BmwB
†

nw′ =
∑
w′′

(
Bmw′′fw′′,w,n,w′ + f∗w′′,w′,m,wB

†
nw′′

)
+Emw;nw′(φ) , (1.5d)

Bw|0〉 = δw,0|0〉 , 〈0|B †
w = 〈0|δw,0 , (1.5e)

where Emw,nw′(φ) and the structure constants f will be given in Sec. 6. The inter-

acting Cuntz algebra (1.1) is a subalgebra of (1.5), and (1.5b) includes a new relation

for B†mBn. In the case of oscillators and/or free action theories, the Cuntz algebra

itself is a subalgebra of the infinite-dimensional algebra (see App. B).

The creation operators of this algebra provide us with a natural basis

B †
w |0〉 = Gw̄(φ)|0〉 (1.6)

comprised of the Gw’s themselves, and the dual basis, orthonormal to (1.6), turns

out to involve the planar connected parts Xw in a very simple way.

This leads us to a number of forms of the master field (see Sec. 7), including

the basic form

φm =
∑
w

XmwGw̄(φ) (1.7)

and the dual basis form

φm = φ†m = B̄m
(
1 + X̄(B†)

)
, B̄m = (E−1)mnBn , (1.8)

where B̄ and B† satisfy a Cuntz algebra and X̄(B†) is a generating function of

planar connected parts. The dual basis form (1.8) is the Hermitian counterpart of

the non-Hermitian form obtained diagrammatically by Gopakumar and Gross.7 We

also give the forms of the master field in terms of the planar correlators and the

planar 1PI parts.

For action theories, these forms of the master field immediately give a number

of new free-algebraic forms (see Sec. 8) of the planar Schwinger–Dyson equations,

including, surprisingly, the basic form (1.7) itself and the dual basis system

B†m +Emn
(
B̄(1 + X̄)

)
B̄n = Gm

(
B̄(1 + X̄)

)
(1.9)

both of which can be used for computation of the planar connected parts. Systems

similar to (1.9) follow for the planar correlators and the planar effective action, and,

although they are packaged differently, these systems (including (1.9)) are closely

related to the free-algebraic equations derived diagrammatically in Ref. 8.
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We conclude that the interacting Cuntz algebra (1.1) and the infinite-

dimensional free algebra (1.5) provide an algebraic framework which underlies and

extends much of what is known about large N , and we are optimistic that these

algebras will provide a foundation for the future study of the master field.

2. Unification of Action and Phase-Space Master Fields

2.1. Fifth-time formulation and Euclidean quantum field theory

We consider a general SU(N)-invariant matrix model with Euclidean action S

〈Trφw〉 = η−1

∫
(dφ)e−S Tr[φw] , η =

∫
(dφ)e−S , (2.1a)

S = N Tr

[
S
(

φ√
N

)]
, φw = φm1 · · ·φmn , m = 1 · · ·d (2.1b)

and follow the fifth-time formulation2 to interpret the model as a quantum system,

with a (fifth time) Hamiltonian formulation, in one higher dimension. The resulting

picture is a pedestrian version of operator Euclidean quantum field theory.

In the Hamiltonian formulation, the matrix fields φm are operators and the

action averages are reinterpreted as ground state averages:

〈Trφw〉 = 〈.0|Trφw|0.〉 , |0.〉 = ψ0(φ) = η−
1
2 e−

S
2 , (2.2)

where the dot in the (unreduced) ground state follows the notation of Ref. 1. We

may also introduce momentum operators and equal fifth-time commutators as

πmrs =
1

i

∂

∂φmsr
,
[
φmrs, π

n
tu

]
= iδmn δst δru , (2.3a)

(φmrs)
† = φmsr , (πmrs)

† = πmsr , r, s = 1 · · ·N (2.3b)

and, following Ref. 1, we use the momenta to construct matrix creation and anni-

hilation operators

Bmrs =
√

2Amrs = Fmrs + iπmrs , Bmrs|0.〉 = 0 , (2.4a)

(B†m)rs =
√

2(A†m)rs = Fmrs − iπmrs , 〈.0|(B†m)rs = 0 , (2.4b)

Fmrs =
1

2

∂S

∂φmsr
. (2.4c)

Reference 1 also tells us that the quantities

Emnrs = 2Cmnrs = [Bmrt , (B
†n)ts] =

∂2S

∂φmtr∂φ
n
st

(2.5)

will be useful at large N .

As for the fifth-time Hamiltonian itself, we may choose any of a very large

number of operators, for example

H5 =
1

2
Tr(B†mBm) , H5|0.〉 = 0 (2.6)
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so long as the choice provides us with a healthy Hilbert space and its ground state

is |0.〉 in (2.2). The equal fifth-time averages of any such higher-dimensional sys-

tem will be the original Euclidean action averages, and, moreover, the large N

action averages are controlled by the phase-space master fields,1 which are clas-

sical solutions of the higher-dimensional theory. The parallel with the AdS/CFT

correspondence3–5 is clear, if only we are clever enough to choose both an interesting

action theory and an interesting higher-dimensional extension. Except for a simple

example based on (2.6) in App. A, further consideration of this issue is beyond the

scope of the present paper, and we will not choose any specific form for H5 here.

2.2. Reduced formulation

We may now go over to reduced states and operators for the large N action theory,

drawing heavily on the results of Ref. 1. Important relations given there include

〈.0|Tr

[(
φ√
N

)w]
|0.〉 = N〈0|φw|0〉 ≡ N〈φw〉 , (2.7)

where φm is the master field, φw are products of the master field in the word notation

(1.2a), and the undotted vacuum is the reduced ground state. The reduced equal

(fifth) time algebra involves the tilde operators introduced in Ref. 1

[φm, π̃n] = [φ̃m, πn] = iδm,n|0〉〈0| , (2.8a)

[φm, φ̃n] = [πm, π̃n] = 0 , (2.8b)

[φm, πm] = i(d− 1 + |0〉〈0|) , (2.8c)

φ†m = φm , π†m = πm , (2.8d)

φ̃m|0〉 = φm|0〉 , π̃m|0〉 = πm|0〉 , (2.8e)

where the operators πm are the reduced momenta.

The reduced creation and annihilation operators corresponding to (2.4) are

Bm =
√

2Am = Fm(φ) + iπm , B†m =
√

2A†m = Fm(φ) − iπm . (2.9)

These operators satisfy the interacting Cuntz algebra1

BmB
†
n = Emn(φ) = 2Cmn(φ) , (2.10a)

B†m(E−1)mnBn = 1− |0〉〈0| , (2.10b)

Bm|0〉 = 〈0|B†m = 0 (2.10c)

at equal (fifth) time, as well as the relations

[B̃m, Bn] = [B̃†m, B
†
n] = 0 , (2.11a)

[φ̃p, BmB
†
n] = 0 , (2.11b)

BmB
†
n|0〉 = 2i[π̃n, Fm]|0〉 = 2Cmn(φ)|0〉 = Emn(φ)|0〉 , (2.11c)

which will be useful below.
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It should be noted that Haan’s6 Euclidean master field relation appears in our

notation as

(Fm + iπ̃m)|0〉 = 0 . (2.12)

Although this relation follows from (2.8e), (2.9) and (2.10c), the operators Fm+iπ̃m
do not satisfy any simple algebra.

2.3. Sharpening a tool

In Ref. 1, the BB† relation (2.10a) was proven by analysis of the ground state wave

function (and follows from (2.2) in the action case), but a conjecture was offered

which would give this result directly in the reduced operator formulation. Here we

prove this conjecture, assuming only the completeness of the basis φw|0〉.

Theorem.

If [X, φ̃m] = [Y, φ̃m] = 0, ∀m and X|0〉 = Y |0〉, then X = Y . (2.13)

Proof . Introduce the complete set of states

|w〉 ≡ φw|0〉 = φ̃w̄|0〉 (2.14)

and follow the steps

X|w〉 = Xφ̃w̄|0〉 = φ̃w̄X|0〉 = φ̃w̄Y |0〉 = Y φ̃w̄|0〉 = Y |w〉 . (2.15)

In practice, this theorem can be read as

[φ̃m, O1(φ, π)] = 0 , ∀m → O1(φ, π) = O2(φ) , (2.16a)

O1(φ, π)|0〉 = O2(φ)|0〉 , (2.16b)

where O2(φ) is determined by the ground state condition (2.16b). This is the form

conjectured in Ref. 1. As a first application of this theorem, the relation (2.10a) of

the interacting Cuntz algebra follows immediately from (2.11).

2.4. Action examples

Using Apps. C and E of Ref. 1, and in particular the results,

(Emn)rs =
∂2S

∂φmtr∂φ
n
st

=
N
Bmrt(B

†n)ts , (2.17a)

1

N
Tr

[
h

(
φ√
N

)]
=
N
〈h(φ)〉 (2.17b)

we may compute the operators Fm and Emn of the interacting Cuntz algebra (2.9)

and (2.10) for any action:
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(1) Standard one-matrix model

S = Tr

(
m2

2
φ2 +

λ

4N
φ4

)
, (2.18a)

F =
1

2
(m2φ+ λφ3) , E = m2 + λ(〈φ2〉+ 〈φ〉φ+ φ2) . (2.18b)

(2) General one-matrix model

S = N

∞∑
n=1

Sn

n
Tr

[(
φ√
N

)n]
, (2.19a)

F =
1

2

∞∑
n=1

Snφ
n−1 , E =

∞∑
n=2

Sn

n−2∑
m=0

〈φm〉φn−m−2 . (2.19b)

(3) Two-matrix model

S = Tr

[
m2

1

2
(φ1)2 +

m2
2

2
(φ2)2 +

λ1

4N
(φ1)4 +

λ2

4N
(φ2)4 + gφ1φ2

]
, (2.20a)

F1 =
1

2
(m2

1φ1 + λ1φ
3
1 + gφ2) , F2 =

1

2
(m2

2φ2 + λ2φ
3
2 + gφ1) , (2.20b)

E11 = m2
1 + λ1(φ

2
1 + 〈φ1〉φ1 + 〈φ2

1〉) , E12 = g , (2.20c)

E22 = m2
2 + λ2(φ

2
2 + 〈φ2〉φ2 + 〈φ2

2〉) , E21 = g . (2.20d)

(4) General action

S = N
∑
w

Sw Tr

[(
φ√
N

)w]
, (2.21a)

Fm =
1

2

∑
w

Sw
∑

w=umv

φvu , Emn =
∑
w

Sw
∑

w∼numv
〈φu〉φv , (2.21b)

where the notation w ∼ w′ means that the two words are equivalent under a

cyclic permutation of their letters.

For actions with even powers of φ only, we may set the odd vev’s to zero. We

also find that the simple forms

Fm = Fm(φm) , Emn = Em(φm)δm,n (2.22)

follow for matrix models of independent matrices (free random variables9). The

special case of free actions and/or oscillators (which give the Cuntz algebra) is

discussed in App. B.

3. Annihilation Operators

In Secs. 3–7 below, action and phase-space master fields are discussed on an equal

footing.
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3.1. Linear in π

We turn now to the construction of the infinite-dimensional free algebra, beginning

with the composite annihilation operators Bw:

Bw ≡ Bw = Bm1Bm2 · · ·Bmn , Bw|0〉 = δw,0|0〉 . (3.1)

These operators automatically satisfy the product rule

BwBw′ = Bww′ (3.2)

and moreover we find with (2.8) and (2.10c) that

[φ̃p, Bm] = −δp,m|0〉〈0| , (3.3a)

[φ̃p, Bmn] = −δp,m|0〉〈0|Bn = −δp,m|0〉〈0|2Fn(φ) , (3.3b)

〈0|ξ(φ)πm = 〈0|{[ξ̃(φ), πm]− iFm(φ)ξ̃(φ)} = 〈0|ξm(φ) , (3.3c)

where the operators ξm(φ) are determined in principle as in Ref. 1. It follows that

[φ̃p, Bmw] = −δp,m|0〉〈0|Bw = −δp,m|0〉〈0|Gw(φ) , (3.4)

where the operators Gw are to be determined. The theorem in (2.13) then tells us

that the annihilation operators are linear in the reduced momenta πm

Bmw = Fmw(φ) + iπmGw(φ) , (3.5a)

G0 = 1 , Gm = 2Fm , (3.5b)

where the operators Fw are also to be determined. In what follows, we will discuss

this surprising result from a number of viewpoints.

3.2. Determination of Fw and Gw

In this subsection, we give an independent inductive proof of the formula (3.5a)

which also determines the coefficients Fw and Gw recursively in terms of the known

operators Fm and Emn.

To begin, we rewrite the interacting Cuntz relation (2.10a) in terms of reduced

momenta, using (2.9):

BmB
†
n = Emn(φ)↔ πmπn + iπmFn − iFmπn + FmFn −Emn = 0 . (3.6)

The π form of this relation will be called the first master constraint below. It allows

us to eliminate πmπn in favor of terms linear in π, and hence to verify for example

that Bmn = BmBn is indeed linear in π. A proof by induction then starts with

BmBnw = Bmnw ↔ (Fm + iπm)(Fnw + iπnGw) = Fmnw + iπmGnw , (3.7)

where we have assumed the form (3.5a) and the left side of (3.7) is a special case

of (3.2).
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Using (3.6) in (3.7), one then obtains the recursion relations

Gmw = Fmw + FmGw , (3.8a)

Fmnw = Fm(Fnw + FnGw)−EmnGw (3.8b)

which can be rearranged into the more useful forms

Gmnw = GmGnw − EmnGw , (3.9a)

Fmw = Gmw − FmGw . (3.9b)

These relations are easily iterated to any desired order, and we list here the results

G0 = 1 , Gm = 2Fm , Gmn = GmGn −Emn , (3.10a)

Gmnp = GmGnGp −GmEnp −EmnGp , (3.10b)

Gmnpq = GmGnGpGq −GmGnEpq −GmEnpGq −EmnGpGq +EmnEpq , (3.10c)

Fmn = 2FmFn −Emn , Fmnp = 4FmFnFp − FmEnp − 2EmnFp (3.10d)

for the first few words of F and G.

More generally, the recursion relations can be used to prove the following

properties:

G †
w = Gw̄ , F †

mw = Gw̄m −Gw̄Fm , (3.11)

G =
1

1− αmGm(φ) + αmαnEmn(φ)
=
∑
w

αwGw(φ) , (3.12a)

(
1− αmFm(φ)

)
G =

∑
w

αwFw(φ) , F0 = 1 , (3.12b)

GwmGnw′ = Gwmnw′ +GwEmnGw′ . (3.13)

Here αm (with products αw) is a free-algebraic source or “place marker” whose

only property is that it commutes with φm and πm.

The generating functions (3.12a) and (3.12b) show that Gw and Fw are free-

algebraic generalizations of Chebyshev polynomials (see also Subsec. 3.3 and

App. B).

We also mention the relations

Bmw = −B†mGw +Gmw , B †
mw = −Gw̄Bm +Gw̄m (3.14)

which are a useful alternative to the basic equation (3.5a), and the relations

Gwmn = GwmGn −GwEmn , G0 = 1 , Gm = 2Fm , (3.15a)

Fwmn = FwmGn − FwEmn , F0 = 1 , Fm = 1Fm (3.15b)
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which show a complete symmetry of the recursion relations for Gw and Fw, except

for their initial conditions. The relations

πmGw|0〉 = iFmw|0〉 ,
(3.16a)

B†mGw|0〉 = Gmw|0〉 ,

[iπm, G̃nw]|0〉 = EmnGw|0〉 , (3.16b)

[iπm, F̃n]|0〉 = Cmn(φ)|0〉 (3.16c)

also follow from the discussion above. The relation (3.16c), which is a special case

of (3.16b), was given in Ref. 1.

3.3. One-matrix models

In the case of general one-matrix (action or Hamiltonian) models the operators F

and E commute, and w → [w], giving the simpler forms

Gn+2 = G1Gn+1 −EGn , G0 = 1 , G1 = 2F , (3.17a)

Fn+1 = Gn+1 − FGn , F0 = 1 , F1 = F , (3.17b)

Gn = E
n
2

sin((n+ 1)θ)

sin θ
, Fn = E

n
2 cos(nθ) , (3.17c)

ρ =

√
E

π
sin θ , cos θ =

F√
E
, E = 2C = F 2 + π2ρ2 , (3.17d)

GmGn =

minm,n∑
k=0

EkGm+n−2k (3.17e)

which include the Chebyshev polynomials themselves in (3.17c). The finite oper-

ator product expansion in (3.17e) follows immediately from this form. According

to Ref. 1, the quantity ρ in (3.17d) is the ground state density of the action or

Hamiltonian system.

Another special case with simplifications is that of many oscillators and/or free

actions (see App. B).

3.4. Master constraints

Using (3.5a), the composition law

BmwBn = Bmwn (3.18)

can be written out in two equivalent forms, called the master constraints,

πmGwπn + iπmF
†

nw̄ + Fmw(−iπn) + Fmwn − FmwFn = 0 , (3.19a)

B†mGwBn = B†mGwn +GmwBn −Gmwn (3.19b)

and (3.19a) contains the first master constraint (3.6) as the special case when w = 0.
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More generally, the form (3.19a) of the master constraints allow us to eliminate

quadratic forms πmGwπn in favor of forms linear in the reduced momenta, and

similarly for B†mGwBn in (3.19b).

In Hamiltonian theories, constraints are constants of the motion and the first

master constraint, which is equivalent to BmB
†
n − Emn = 0, was noted as a set

of d2 constants of the motion in Ref. 1. It is shown in App. C that all the higher

master constraints are in fact composites of the first master constraint, so there are

no new independent constants of the motion in this list.

4. Creation Operators

4.1. Creation operators and the natural basis

The creation operators of the infinite-dimensional free algebra are defined as the

Hermitian conjugates of the annihilation operators

B †
w = B†mn · · ·B

†
m1

= B†w̄ , (4.1a)

B †
mw = Fmw(φ)† − iGw̄(φ)πm , (4.1b)

〈0|B †
w = 〈0|δw,0 (4.1c)

and therefore satisfy the product rule

B †
w B

†
w′ = B †

w′w . (4.2)

The set of all these creation operators on the ground state is a natural complete1

basis, and we see from (3.9b), (3.16a) and (4.1b) that this basis can be expressed

in terms of the polynomial Gw’s as

(Bw̄)†|0〉 = B† w|0〉 = B̃† w̄|0〉 = Gw(φ)|0〉 , (4.3a)

〈Gw(φ)〉 = δw,0 . (4.3b)

In what follows, the states on the right and left of (4.3a) will be called the natural

basis and its operator form respectively. Further discussion of completeness is given

in Subsec. 5.4.

4.2. B†B relations

Using (3.5a), (4.1b) and the first master constraint (3.6), we find the B†B algebra

B †
mw Bnw′ = Gw̄mBnw′ −Gw̄Bmnw′ (4.4)

and the relations

B†m(E−1)mnBn = 1− |0〉〈0| , (4.5a)

B †
mpw (E−1)mnBnqw′ = Gw̄pBqw′ −Gw̄Bpqw′ −Gw̄p|0〉〈0|Gqw′ (4.5b)

also follow immediately from the interacting Cuntz algebra and the composition

laws (3.18) and (4.2).
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A more symmetric version of (4.4) and (4.5) is

B †
w Bw′ = B †

w Gw′ +Gw̄Bw′ −Gw̄w′ , (4.6a)

B †
mw (E−1)mnBnw′ = B †

w Bw′ −Gw̄|0〉〈0|Gw′ , (4.6b)

where (4.6a) can be used to “linearize” (4.6b). These forms follow directly from

(3.14) and the interacting Cuntz algebra.

4.3. Local and nonlocal

In Ref. 1, many reduced operators were called nonlocal because they involved

arbitrarily-high powers of the reduced momenta πm, and others were called local

because they involved no more than two powers of the reduced momenta. The

results above blur this distinction.

As an example,1 consider the (Hermitian) isotropic oscillator Hamiltonian H,

which may now be re-expressed in terms of the generators of the infinite-dimensional

free algebra:

H ≡
∑
w 6=0

A †
w Aw =

∑
w 6=0

1

2[w]
B †
w Bw (4.7a)

=
∑
m,w

1

2[w]+1
(Gw̄mBmw −Gw̄Bmmw) (4.7b)

=
∑
m,w

1

2[w]+1
(B †

mw Gmw −B †
mmwGw) . (4.7c)

The starting point is “nonlocal” because each of the Cuntz operators in the products

Aw = Aw = Am1 · · ·Amn is linear in the reduced momentum, while (4.7b) and its

Hermitian conjugate (4.7c) are “local but nonpolynomial” because they are linear

in the reduced momenta.

Although we will not discuss it explicitly here, the phenomenon of this section

also generates new large N field identifications (see Ref. 1) in the unreduced theory.

5. Dual Basis

5.1. Definition

We wish to find new polynomials {Tw(φ)} which are vev-orthogonal to the set

{Gw(φ)}

〈Tw(φ)Gw̄′(φ)〉 = δw,w′ , T0(φ) = 1 (5.1)

and we will refer to the set of states {〈0|Tw(φ)} as the dual basis.
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Towards the construction of these polynomials, we first postulate a generating

function for the T ’s

Y =
1

1− βmφm +X(β)
=
∑
w

βwTw(φ) , (5.2a)

X(β) =
∑
w

βwXw , X0 = 0 , (5.2b)

where βm is another free-algebraic source (like αm above) and the quantity X(β)

is to be determined. Note that the relations

〈Tw〉 = δw,0 , 〈Y 〉 = 1 (5.3)

follow from (5.1) and (5.2) respectively.

Next, follow the steps

〈0|Y B̃†m = 〈0|[Y,−iπ̃m] = 〈0|Y [1− βnφn +X, iπ̃m]Y (5.4a)

= 〈0|Y βm|0〉〈0|Y = βm〈0|Y , (5.4b)

where we have used (2.8) and (5.2). Repeating this, we obtain

〈0|Y (B̃†)w|0〉 = βw〈Y 〉 = βw (5.5)

which, with (4.3a), gives us the desired result (5.1).

To compute Tw and Xw explicitly, multiply (5.2a) on the left by the inverse of

Y to obtain

1 =
∑
w

βwTw −
∑
m,w

βmwφmTw +
∑
w,w′

βww
′
XwTw′ . (5.6)

Then, equating coefficients of each β word, we find the recursion relation for Tw

Tmw = φmTw −
∑

w=w1w2

Xmw1Tw2 , T0 = 1 . (5.7)

Multiplying in the other order leads to

Twm = Twφm −
∑

w=w1w2

Tw1Xw2m (5.8)

and the vev’s of these equations

Xmw = 〈φmTw〉 = 〈Twφm〉 = Xwm (5.9)

determine the Xw’s and show that they have cyclic symmetry in the letters of

their words.
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5.2. Examples

Because the T ’s and X’s are unfamiliar, we list the first few words of each:

T0 = 1 , Tm = φm −Xm ,
(5.10a)

Tmn = (φm −Xm)(φn −Xn)−Xmn ,

Tmnp = (φm −Xm)(φn −Xn)(φp −Xp)

− (φm −Xm)Xnp −Xmn(φp −Xp)−Xmnp , (5.10b)

X0 = 0 , Xm = 〈φm〉 , Xmn = 〈φmφn〉 −XmXn , (5.11a)

Xmnp = 〈φmφnφp〉 −XmXnp −XnXmp −XpXmn −XmXnXp , (5.11b)

Xmnpq = 〈φmφnφpφq〉 −XmXnpq −XnXmpq −XpXmnq

−XqXmnp −XmnXpq −XmqXnp −XnXmXpq

−XnXpXmq −XnXqXmp −XpXmXqn

−XqXpXmn −XqXmXnp −XmXnXpXq . (5.11c)

One sees that theXw’s so far match the planar connected parts discussed in Refs. 10

and 8, and one also sees that Tw(φ), with 〈Tw〉 = δw,0, may be considered as a type

of normal ordered product :φw : of the reduced fields.

5.3. More general results

From the recursive definitions (5.7)–(5.9) we find

T †
w = Tw̄ , X ∗

w = Xw̄ , (5.12a)

〈Gw̄Tw′〉 = δw,w′ (5.12b)

as well as the following relations

Tw = φw −
∑

w=w1w2w3

Tw1Xw2φ
w3 , (5.13)

TwTw′ =
∑
w′′

Cw,w′,w′′Tw′′ , [w′′] ≤ [w] + [w′] , (5.14)

〈TmTw〉 = Xmw(1− δw,0) , (5.15a)

〈TmnTw〉 = Xmnw(1− δw,0) +
∑

w=w1w2
w1,w2 6=0

Xnw1Xmw2 , (5.15b)

...

Z(j) ≡
∑
w

〈φw〉jw = 1 +X
(
jZ(j)

)
. (5.16)
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In particular, (5.13) can also be iterated to obtain the T ’s. The relation in (5.14) is

an operator product expansion, whose sum obeys the selection rule shown because

the T ’s are finite polynomials in φ. The list of relations begun in (5.15) shows

correspondingly higher powers of Xw when extended to more general words.

The final relation (5.16), with j another free-algebraic source, is proven in

App. D. This is the standard relation10,8 between the generating functions Z and

X of planar and connected planar correlators respectively, and completes the iden-

tification of Xw as the planar connected part with [w] legs.

5.4. Completeness

The dual basis {〈0|Tw(φ)} is complete because the {φw|0〉} basis is complete, and

therefore the basis {B†w|0〉 = Gw(φ)|0〉} is also complete.c This gives the complete-

ness statements

1 =
∑
w

Gw(φ)|0〉〈0|Tw̄(φ) =
∑
w

Tw(φ)|0〉〈0|Gw̄(φ) (5.17)

and various consequences such as

δw,w′ =
∑
w′′

〈Tw̄Tw′′〉〈Gw̄′′Gw′〉 . (5.18)

Moreover, either set of polynomials {Gw(φ)} or {Tw(φ)} give a complete basisd for

expansion of any polynomial in φ

F(φ) =
∑
w

Gw(φ)〈Tw̄(φ)F(φ)〉 =
∑
w

Tw(φ)〈Gw̄(φ)F(φ)〉 . (5.19)

We have already encountered such an expansion in (5.14).

Another operator product expansion which will be useful below is

GwGw′ =
∑
w′′

Gw′′〈Tw̄′′GwGw′〉 . (5.20)

The sum on the right of (5.20) is generally an infinite number of terms, but a finite

number in the case of oscillators/free actions (see App. B). It will also be useful to

consider expansions of products of the master field:

φm =
∑
w

XmwGw̄(φ) =
∑
w

Gw(φ)Xw̄m , (5.21a)

φmφn =
∑
w

(Xmnw +
∑

w=w1w2

Xnw1Xmw2)Gw̄(φ) . (5.21b)

...

The proof of these follow readily from (5.19) and (5.15).

cA different argument for the completeness of B†w|0〉 was given in Ref. 1.
dThere are questions which need further study concerning the domain of convergence of expansions
in the Gw’s when infinite sums are involved. For example, in the case of one matrix with a pure
φ4 action the functions Gw(φ) have no linear term in φ and yet Eq. (5.21a) says that an infinite
sum of such functions is equal to φ.
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5.5. Operator form of the dual basis

Recall thatB †
w̄ |0〉 is the operator form of the basisGw(φ)|0〉. To obtain the operator

form of the dual basis 〈0|Tw(φ), we first define a new set of operators B̄m

B̄m ≡ (E−1)mnBn . (5.22)

The interacting Cuntz algebra (2.10) implies that these operators satisfy a (dual

basis) Cuntz algebra

B̄mB
†
n = δm,n , B†mB̄m = 1− |0〉〈0| , (5.23a)

B̄m|0〉 = 〈0|B†m = 0 (5.23b)

although B̄m and B†m are not Hermitian conjugates. This curious fact will play a

central role in the discussion of Sec. 7.

Next, we consider the product of any number of B̄’s

B̄w = B̄w = B̄m1 · · · B̄mn (5.24)

and note that

〈0|B̄w̄′Gw|0〉 = 〈0|B̄w̄
′
B†w|0〉 = δw,w′ . (5.25)

It follows that

〈0|(Tw̄′ − B̄w̄′)Gw|0〉 = 0 , ∀ w (5.26)

and this gives the operator form of the dual basis

〈0|B̄w = 〈0|Tw(φ) , (5.27a)

1 =
∑
w

B †
w |0〉〈0|B̄w (5.27b)

because the basis Gw|0〉 is complete.

The operator form of the dual basis gives us a number of new forms for the

planar connected parts

Xw̄mn = 〈Tw̄mφn〉 = 〈B̄w̄mφn〉 = 〈B̄w̄(E−1)mn〉 = 〈Tw̄(E−1)mn〉 , (5.28)

where we have used (2.8e) and (3.3a). Then the useful relation(
E−1(φ)

)
mn

=
∑
w

Xmnw̄Gw(φ) (5.29)

follows immediately from (5.19).

For free random variables, we can say more. Taken together, the form of E in

(2.22) and the final form of X in (5.28) show that Xw̄mn ∝ δm,n in this case. Then,

the cyclic symmetry of Xw tells us that the only nonzero planar connected parts

are the “single letter” X’s

Xw(m) ≡ Xm···m 6= 0 , m = 1 · · ·d . (5.30)

This simple fact means that the computation of the planar connected parts (see

Sec. 8) is one-dimensional and, via Eq. (5.16), the relation (5.30) explains many

intricate identities among the planar parts.



October 25, 1999 16:56 WSPC/139-IJMPA 0214

Infinite-Dimensional Free Algebra and the . . . 4669

6. BB†

We have so far verified all the relations of the infinite-dimensional free algebra (1.5)

except for the BB† relation (1.5d). This relation requires a combination of several

of the principles we have discussed above, and will be developed in stages.

Note first the relations

BwmB
†
n = BwEmn , BmB

†
wn = EmnB

†
w , (6.1a)

BwmB
†

w′n = BwEmnB
†

w′ (6.1b)

which follow from (2.10a) alone. In (6.1b), we see that this direction soon fails to

produce relations linear in Bw and B †
w .

To obtain relations linear in B and B†, we consider the product BmwB
†

nw′ using

the forms (3.14) of these operators in terms of the interacting Cuntz operators.

Among the four resulting terms, the only term quadratic in B, B† is B†mGwGw′Bn.

This term may be “linearized” by first using the completeness relation (5.20) and

then using the master constraints in the form (3.19b). We find two alternative forms

of the result:

BmwB
†

nw′ = −
[
B†mGwGw̄′n +GmwGw̄′Bn −GmwGw̄′n

]
+
∑
w′′

〈Tw̄′′GwGw̄′〉
[
B†mGw′′n +Gmw′′Bn −Gmw′′n

]
, (6.2)

BmwB
†

nw′ =
[
BmwGw̄′n +GmwB

†
nw′ −GmwGw̄′n

]
−
∑
w′′

〈Tw̄′′GwGw̄′〉
[
Bmw′′n +B †

nw̄′′m −Gmw′′n
]
. (6.3)

These forms are linear in the operators B, B† but the coefficients are functions of φ.

A form which is strictly linear in the generators Bw, B †
w can be derived from

(6.2) by again using the expansion (5.20) for the products of two G’s and then using

the formulas (3.14) in reverse. The result is

BmwB
†

nw′ =
∑
w′′

(Bmw′′fw′′,w,n,w′ + f∗w′′,w′,m,wB
†

nw′′ )

+Emw;nw′(φ) , (6.4a)

fw′′,w,n,w′ = 〈Tw̄′′GwGw̄′n〉 −
∑
u

δw′′,un〈TūGwGw̄′〉 , (6.4b)

Emw;nw′ = GmwGw̄′n +
∑
w′′

[
Gmw′′n〈Tw̄′′GwGw′〉

−Gmw′′〈Tw̄′′GwGw̄′n〉 −Gw′′n〈Tw̄′′GmwGw̄′〉
]
. (6.4c)

One may compare this general structure with the simple oscillator results in App. B.
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7. Forms of the Master Field

7.1. Basic form

The form (5.21a) of the master field in terms of the basis Gw

φm =
∑
w

XmwGw̄(φ) (7.1)

will be called the basic form of the master field. All the other forms of the master

field below follow from the basic form.

7.2. In terms of interacting Cuntz operators

The basis Gw is a set of polynomials (see Sec. 3) in Gm and Emn, which may in

turn be written as

Gm = Bm +B†m , Emn = BmB
†
n . (7.2)

These relations allow us to express the Gw’s and hence the master field (7.1) in

terms of interacting Cuntz operators:

φm = Xm +Xmn(Bn +B†n) +Xmpn

(
BnBp +B†n(Bp +B†p)

)
+ · · · . (7.3)

7.3. In terms of ordinary Cuntz operators

Recall the construction1 of ordinary Cuntz operators from the interacting Cuntz

operators

am =
(
E−

1
2

)
mn
Bn , a†m = B†n

(
E−

1
2

)
nm

, (7.4a)

ama
†
n = δm,n , a†mam = 1− |0〉〈0| , am|0〉 = 〈0|a†m = 0 , (7.4b)

where a† is the Hermitian conjugate of a. This allows us to express the master field

(7.3) in terms of ordinary Cuntz operators:

φm = Xm +Xmn

((
E

1
2

)
nq
aq + a†q

(
E

1
2

)
qn

)
+ · · · . (7.5)

7.4. Dual basis form

To express the master field in this form, follow the steps

B̄m = (E−1)mnBn =
∑
w

Xmnw̄Gw(Fn + iπn) =
∑
w

Xmnw̄(Gwn −B†wn) , (7.6)

where we have used the form (4.1b) for B †
w and the identities (3.9b) and (5.29).

Adding Xm, we obtain the dual basis form of the master field

φm =
∑
w

XmwGw̄ = B̄m +
∑
w

Xmw̄B
†w . (7.7)



October 25, 1999 16:56 WSPC/139-IJMPA 0214

Infinite-Dimensional Free Algebra and the . . . 4671

Recall from (5.23) that the operators B̄m, B†m (with B̄†m 6= B†m) also satisfy an

ordinary Cuntz algebra. Other ways of writing the dual basis form include

φm = B̄m +
∑
w

XmwB
†
w = B̄m

(
1 + X̄(B†)

)
, (7.8a)

X̄(β) ≡
∑
w

βwXw̄ , 〈0|X̄(B†) = 0 . (7.8b)

Here, the first form in (7.8a) emphasizes that the master field is linear in the

generators of the infinite-dimensional free algebra, and X̄(B†) in the second form

is an alternate generating function of the planar connected parts (see App. D).

Note that the forms (7.7) and (7.8a) of the master field (and other forms

throughout this section which are equal to φm in (7.1)) appear to involve the re-

duced momenta πm in the creation and annihilation operators. However, as the

reader is encouraged to verify, all such π terms cancel.

7.5. Second dual basis form

In spite of appearances, the dual basis form (7.8a) of the master field is Hermitian

(as are all the previous forms), which tells us that

φm = φ†m = B̄†m +
∑
w

Xmw̄B
w , B̄†m = B†n(E

−1)nm . (7.9)

The operators B, B̄†, with B† 6= B̄†, form another (second dual basis) Cuntz

algebra

BmB̄
†
n = δm,n ,

B̄†mBm = 1− |0〉〈0| , (7.10a)

Bm|0〉 = 〈0|B̄†m = 0 ,

B̄ †
w |0〉 = Tw̄(φ)|0〉 , (7.10b)

1 =
∑
w

B̄ †
w |0〉〈0|Bw (7.10c)

and we see that B̄ †
w creates the ket form of the dual basis.

7.6. Non-Hermitian forms

Because the two sets of operators (am, a
†
n) and (B̄m, B

†
n) both satisfy the Cuntz

algebra, the two sets are related by a similarity transformation S

SamS
−1 = B̄m = (E−1(φ))mnBn =

(
E−

1
2 (φ)

)
mn
an , (7.11a)

Sa†mS
−1 = B†m = a†n

(
E

1
2 (φ)

)
nm

(7.11b)

and S cannot be unitary because B† is not the Hermitian conjugate of B̄.
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Then we see that the dual form of the master field in (7.8a) is the Hermitian

counterpart of the non-Hermitian Gopakumar–Gross form Mm of the master field:

φm = SMmS
−1 , (7.12a)

Mm = am +
∑
w

Xmw̄a
†w = am

(
1 + X̄(a†)

)
6= M†m . (7.12b)

Our algebraic derivation of (7.12b) complements the diagrammatic derivatione in

Ref. 7. The one-matrix form M = a + Σmcm+1a
†m of the non-Hermitian master

field was determined earlier in Ref. 9.

The Hermitian conjugate of the Gopakumar–Gross form, which also serves as a

master field, is related to the second dual form (7.9) of the Hermitian master field

as follows:

S−1 †amS
† = Bm =

(
E

1
2

)
mn
an , (7.13a)

S−1 †a†mS
† = B̄†m = B†n

(
E−1

)
nm

= a†n
(
E−

1
2

)
nm

, (7.13b)

φm = φ†m = S−1 †M†mS
† , (7.13c)

M†m = a†m +
∑
w

Xmw̄a
w =

(
1 + X̄(a)

)
a†m . (7.13d)

These relations are nothing but the Hermitian conjugate of (7.11) and (7.12).

7.7. In terms of planar correlators

The relation (D.10) can be read as

Z̄(j) = 1 + X̄(B†) , Z̄(j) =
∑
w

jw̄〈φw〉 , (7.14a)

B†m = jmZ̄(j) , jm = B†mZ̄
−1(j) , (7.14b)

B̄mjn = δm,nZ̄
−1(j) , 〈0|Z̄(j) = 〈0| , (7.14c)

where Z̄(j) is an alternate generating function for planar correlators. The “quantum

source” jm lives in a fourth Cuntz algebra

∂

∂jm
≡ Z̄(j)B̄m , B̄m = Z̄−1(j)

∂

∂jm
, (7.15a)

∂

∂jm
jn = δm,n , jm

∂

∂jm
= 1− |0〉〈0| , (7.15b)

∂

∂jm
|0〉 = 〈0|jm = 0 (7.15c)

which follows from (7.14) and the Cuntz algebra (5.23) of B̄ and B†.

eUnfortunately, Gopakumar and Gross give the similar but incorrect result Mm = am +∑
wXmwa

†w, as we ourselves did in an earlier version. To check that (7.12b) is in fact the correct
form, evaluate 〈MmMnMp〉 using the Cuntz algebra for a, a†.
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This gives the forms of the master field

φm = B̄mZ̄(j) = Z̄−1(j)
∂

∂jm
Z̄(j) , (7.16a)

φw = Z̄−1(j)

(
∂

∂j

)w
Z̄(j) (7.16b)

in terms of the planar correlators.

7.8. In terms of planar 1PI parts

The master field can also be written as a function of the planar connected one

particle irreducible (1PI) parts. To see this, we first decompose the dual basis form

of the master field (7.8a) into its classical part Φm and its quantum part B̄m

φm = Φm + B̄m , (7.17a)

Φm(B†) ≡ B̄mX̄(B†) =
∑
w

Xmw̄B
†w , (7.17b)

ΦmB
†
m = B†mΦm = X̄(B†) . (7.17c)

Our definition of the classical part Φm agrees with the field called Φ in Ref. 8, but

the identities in (7.17c) are new.

The planar effective action Γ(Φ) is defined as

Γ(Φ) ≡ ΦmB
†
m = B†mΦm = X̄(B†) =

∑
w

ΓwΦw , (7.18a)

B̄mΓ(Φ) = Φm , 〈0|Γ(Φ) = 0 , (7.18b)

where Γw is the cyclically symmetric planar 1PI part with [w] legs. This definition

of Γ(Φ) follows Ref. 10 but differs by a minus sign from the definition of Ref. 8,

and we note in particular that the Legendre transform defined in Ref. 8

X̄(B†) = −Γ(Φ) +B†mΦm + ΦmB
†
m (7.19)

is satisfied trivially by (7.18a).

Then the master field can be written as

φm = Φm + B̄m = B̄m
(
1 + Γ(Φ)

)
(7.20)

by changing variables from B† to Φ. But this is only half the job because we also

want to find the Cuntz algebra in which Φm resides.

This is most easily done in the case Xm = 0 (no tadpoles), which we assume

below. In this case, one has the additional relations

Φm = B†nγnm = γmnB
†
n , (7.21a)

γmn(B
†) =

∑
w

Xmnw̄B
†w , γmn|0〉 = (E−1)mn|0〉 , (7.21b)

B̄mΦn = γmn (7.21c)
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and γmn is invertible because it begins with Xmn. This gives us the Cuntz algebra

of Φm:

∂

∂Φm
≡ (γ−1)mnB̄n , (7.22a)

∂

∂Φm
Φn = δm,n , Φm

∂

∂Φm
= 1− |0〉〈0| , (7.22b)

∂

∂Φm
|0〉 = 〈0|Φm = 0 (7.22c)

and we may now express the dual basis Cuntz operators as

B†m = Φn(γ−1)nm = (γ−1)mnΦn , (7.23a)

B̄m = γmn
∂

∂Φn
. (7.23b)

Moreover, the relation

B†m =
∂

∂Φm
Γ(Φ) (7.24)

now follows from (7.22a), (7.15b) and (7.23a).

Our next task is to find the Φ dependence of γmn(B
†). Note first that

Γ(Φ) = ΦmΦn(γ−1)nm (7.25)

follows from (7.18a) and (7.23a), and this gives us the desired result

(γ−1(Φ))mn =
∂

∂Φm

∂

∂Φn
Γ(Φ) . (7.26)

Using (7.23b) and (7.24) in (7.20), we have found the forms of the master field

φm = γmn(Φ)
∂

∂Φn

(
1 + Γ(Φ)

)
= Φm + γmn(Φ)

∂

∂Φn
(7.27)

in the Φ, ∂
∂Φ basis.

Comparing these two forms of the master field (or the two forms of B† in

(7.23a)), we also find the consistency relation

∂

∂Φm
Γ(Φ) =

(
∂

∂Φm

∂

∂Φn
Γ(Φ)

)
Φn (7.28)

but this is only the statement that Γw is cyclically symmetric.

8. Forms of the Schwinger Dyson Equations

In this section, we use the forms of the master field to quickly derive a number

of new free-algebraic forms of the large N Schwinger–Dyson equations for action

theories.f The first form in Subsec. 8.1 is novel, and the rest, although packaged

fAnother form of the Schwinger–Dyson equations follows as null state Ward identities of the
infinite-dimensional free algebra (see App. E).
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differently, are closely related to known free-algebraic formulations.10,8,11,12 In all

our formulations, the dynamical input is stored in the operators Gm(φ), Emn(φ) of

the interacting Cuntz algebra (2.9) and (2.10).

8.1. The basic form as a computational system

We consider first the basic form of the master field

φm =
∑
w

XmwGw̄(φ) (8.1)

which, by matching φ dependence on left and right, is itself a computational system

for the planar connected parts.

We illustrate this by studying the classical limit of the system. Reinstating ~
temporarily, we find that

Gm = O(~0) , Emn = O(~) (8.2)

because Emn in (2.5) is a commutator. The classical limit of (8.1)

φm '
∑
w

XmwG
w̄ , Gw ' Gw = Gm1 · · ·Gmn (8.3)

is then obtained by neglecting all E terms in the Gw’s (see Eq. (3.9a)).

For definiteness, we consider the solution of this equation for the general quartic

interaction

Gm = 2ωmφm + λmnpqφnφpφq , (8.4)

where λmnpq is cyclically symmetric in its indices. In this case, (8.3) contains only

odd powers of φ and we may set the coefficients of each odd power to zero, obtaining

the list of equations

φ : φm = Xmn2ωnφn , (8.5a)

φ3 : 0 = Xmnλnpqrφpφqφr +Xmnpq2ωqφq2ωpφp2ωnφn . (8.5b)

...

The master field φm is a free variable (with no relations), so the unique solution of

this list is easily obtained:

Xmn =
1

2ωm
δm,n , Xmnpq = − λmqpn

2ωm2ωn2ωp2ωq
, (8.6a)

Xmnpqrs =
1∏
2ω

∑
t

1

2ωt
(λmsrtλtqpn + λnmstλtrqp + λpnmtλtsrq) . (8.6b)

...

These results are recognized as the tree-graph contributions to the planar connected

parts.
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For the special case of free random variables, the basic form (8.1) decouples into

d one-matrix problems with X̄ = X

φm =
∑
w(m)

Xw(m)Gw(m)(φm) (8.7)

according to Eqs. (2.22), (5.30) and (3.9a). The one-matrix bases Gw(m)(φm) have

the decoupled form discussed in Subsec. 3.3.

Other relations of this type, e.g. Eq. (5.29), may also be considered as compu-

tational systems.

8.2. The dual basis system

The planar connected parts X̄(B†) satisfy

B†m +Emn(φ)B̄n = Gm(φ) , (8.8a)

φp = B̄p
(
1 + X̄(B†)

)
(8.8b)

which we record together as the dual basis system

B†m +Emn
(
B̄(1 + X̄)

)
B̄n = Gm

(
B̄(1 + X̄)

)
. (8.9)

To derive this system, start with Gm = Bm +B†m, go to the dual basis with (5.22)

and use the dual basis form (8.8b) of the master field.

We have checked that the system (8.9), although packaged differently, is equiv-

alent to the Schwinger–Dyson equations derived diagrammatically for the planar

connected parts in Ref. 8. In particular, our Cuntz operators B̄m act on X̄(B†) as

the operator δ
δJm

of Ref. 8 acts on their W (J), but the two operators are not the

same because

[B̄m, c] = 0 ,
δ

δJm
c = 0 (8.10)

for any c-number c. The E term in (8.9) collects the results of this difference. In

what follows, we make some additional remarks on the structure of the dual basis

system.

We begin by discussing this system in the case of one matrix, where right multi-

plication by powers of B† gives the simple equationg

E

(
ψ

β

)
−G

(
ψ

β

)
β + β2 = 0 , ψ(β) = 1 +X(β) , ψ(0) = 1 (8.11)

for any interaction. (We have replaced B† by a commuting source β.) In the special

case of the quartic interaction (see (2.18)), this reads

λψ2(ψ − 1) + β2
(
m2(ψ − 1)− λX2 − β2

)
= 0 (8.12)

gThis equation gives the large β form X(β) ∼ c−
1
p β

1+ 2
p when G(φ) ∼ cφp at large φ.
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and, except that X2 appears as an unknown, this is the cubic equation found in

Ref. 10 for this interaction. In fact, the equation determines X2 along with the rest

of X(β) in a perturbative or semiclassical expansion. To begin the perturbation

theory, set λ = 0 to find ψ(β) = 1 + β2

m2 . More general perturbation theory is

discussed in App. F.

For the special case of free random variables, the dual basis system (8.9) de-

couples into d one-matrix systems

B†m +Em(φm)B̄m = Gm(φm) , (8.13a)

φm = B̄m +
∑
w(m)

Xmw(m)B
†w(m) (8.13b)

which comprise d decoupled systems of the form (8.11).

The classical limit of the full system (8.9) is

B†m ' Gm(φ) , φp ' B̄pX̄(B†) =
∑
w

Xpw̄B
†w (8.14)

because (1 + X̄) in (8.8b) should be replaced by the dimensionless combination

(1 + X̄/~). As an example, the classical limit (8.14) reads

0 = (B†m − 2ωmXmnB
†
n)

− (2ωmXmnpqB
†
qB
†
pB
†
n + λmnpqXnrB

†
rXpsB

†
sXqtB

†
t ) + · · · (8.15)

for the general quartic interaction (8.4). Setting each power of B† to zero separately,

we find the same tree graphs (8.6) for the planar connected parts.

An equivalent form of the dual basis system (8.9) is

a†m +Emn(M)an = Gm(M) , Mp = ap
(
1 + X̄(a†)

)
(8.16)

in terms of ordinary Cuntz operators and the Gopakumar–Gross form of the master

field.

The other forms of the planar Schwinger–Dyson equations below are the forms

taken by Eq. (8.9) in different bases.

8.3. Equation for the planar correlators

The generating function Z̄(j) of planar correlators satisfies

jmZ̄(j)−Gm
(
Z̄−1(j)

∂

∂j
Z̄(j)

)
+Emn

(
Z̄−1(j)

∂

∂j
Z̄(j)

)
Z̄−1(j)

∂

∂jn
= 0 . (8.17)

To derive this, use (8.8a), (7.14), (7.15a) and the form (7.16a) of the master field.

This can be simplified to(
Z̄(j)jm −Gm

(
∂

∂j

))
Z̄(j) +Emn

(
∂

∂j

)
∂

∂jn
= 0 (8.18)

for any polynomial interaction.
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For the one-matrix case (Z̄ = Z) the system (8.18) reduces to the quadratic

equation (
jZ(j)

)2 −G(1

j

)
jZ(j) +E

(
1

j

)
= 0 , Z(0) = 1 (8.19)

for any interaction. This equation may also be obtained from Eq. (8.11) and

ψ(B†) = Z(j) , B† = jZ(j) ,
ψ(B†)

B†
=

1

j
(8.20)

which is the one-dimensional form of ψ = 1 +X and (7.14).

Again, the relations (8.18) or (8.19) are equivalent to those given in Ref. 8,

although ours are packaged differently. In particular, our “derivative” with respect

to j is a Cuntz operator satisfying

∂

∂jm
c = c

∂

∂jm
(8.21)

when c is a c-number, and not the rule δc
δjm

= 0 satisfied by the derivative in Ref. 8.

The difference between these two operators is again collected in the E term of

(8.18).

8.4. Equation for the planar effective action

The planar effective action Γ(Φ) satisfies

∂

∂Φm
Γ(Φ) +Emn

(
Φ + γ

∂

∂Φ

)
γnp(Φ)

∂

∂Φp
= Gm

(
Φ + γ

∂

∂Φ

)
. (8.22)

To derive this system, use (7.23b), (7.24) and (7.27) in (8.8a). Although packaged

differently, this system is equivalent to the equation for Γ given in Ref. 8. (Again, our

Cuntz operator ∂
∂Φ commutes with c-numbers and so is not equal to the operator

δ
δΦ of Ref. 8.)

For the classical limit of (8.22), we know to neglect E and the quantum part

B̄ = γ ∂
∂Φ of the master field. This gives immediately the classical limit of the planar

effective action

Γ(Φ) ' ΦmGm(Φ) (8.23)

for any theory.

For the general one-matrix model, the system (8.22) simplifies to

{Γ(Φ)− ΦG(Φ[1 + Γ−1(Φ)])}Γ(Φ) + Φ2E(Φ[1 + Γ−1(Φ)]) = 0 . (8.24)

This equation can also be obtained directly from (8.11) by the transformation

ψ = 1 +X(B†) = 1 + Γ(Φ) , (8.25a)

B† = β =
Γ(Φ)

Φ
(8.25b)

which is the one-dimensional form of (7.18). The relations (8.25) were pointed out

in Ref. 10, and we have checked for the quartic case (2.18) that the resulting cubic

equation is in agreement with that given there.
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Appendix A. Large N as Higher-Dimensional Classical Solution

The fifth-time formulation2 of any Euclidean action theory allows us to compute

the large N limit of the action theory as a classical solution of a higher-dimensional

theory, in parallel with the AdS/CFT correspondence.3–5 There is great latitude

in the choice of the fifth-time theory, but any choice will give the same large N

averages for the original theory. Moreover, other methods of higher-dimensional

extension are known (see e.g. Ref. 13) and others still can be invented.

As an illustration, we consider the action theory

S = Tr

(
1

2
m2φ2 +

λ

4N
φ4

)
(A.1)

and we will choose the higher-dimensional extension (overdot is fifth-time

derivative)

H5 =
1

2
Tr(B†B) =

1

2
Tr(π2) + V5 , (A.2a)

V5 =
1

8
Tr

[(
m2φ+

λ

N
φ3

)2]
− 1

4

[
m2N2 + 2λTr(φ2) +

λ

N
(Trφ)2

]
, (A.2b)

S5 =

∫
dt

(
Tr

(
1

2
φ̇2

)
− V5

)
(A.2c)

which is a special case of the simple H5 in Eq. (2.6).

Now we may follow Ref. 14 to consider the phase-space master field, which

solves the higher-dimensional classical equations of motion. Using Apps. C and E

of Ref. 1 and in particular Eq. (2.17b) of the present paper, we find the reduced

classical equations of motion

φ̇ = π , π̇ = −V ′ , (A.3a)

V =
1

8
(s′)2 − λ

2
φ(φ+ 〈φ〉) , s ≡ m2

2
φ2 +

λ

4
φ4 (A.3b)

and the ground state density

ρ(φ) =
1

π

√
2
(
ε− V (φ)

)
,

∫
dφρ(φ) = 1 (A.4)
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from which the original action averages can be computed. (One may set 〈φ〉 = 0 by

symmetry.)

We note that, relative to the discussion of Ref. 10, the higher-dimensional ex-

tension has done the relevant Hilbert inversion for us

1

2
s′(φ) = F (φ) =

∫
dq

P
φ− q ρ(q) (A.5)

(F is given in (2.18b)) and moreover the extension has given us the ground state

density ρ in the higher-dimensional form (A.4). Using (2.6), these features persist

for the higher-dimensional solution of any one-matrix action theory.

Finally, Eqs. (3.17d), (A.3b) and (A.4) tell us that

E = F 2 + π2ρ2 = 2ε+ λφ2 (A.6)

and we obtain

〈φ2〉 =
2ε−m2

λ
(A.7)

on comparison with the form of E in (2.18b).

Appendix B. Oscillators/Free Actions

A number of simplifications occur for oscillator Hamiltonians and/or free action

theories, which we treat together here in the oscillator notation (for free action

theories, S = 1
2Σnm

2
nTr(φnφn), replace 2ωn by m2

n)

Gm = 2ωmφm , Emn = 2ωmδm,n , Xmn =
1

2ωm
δm,n . (B.1)

All other planar connected parts are zero.

Comparing the generating functions (3.12a) and (5.2a), we find that the basis

polynomials Gw and the dual basis polynomials Tw are proportional

Gw(φ) = (2ω)wTw(φ) . (B.2)

It follows that

〈Gw̄Gw′〉 = (2ω)wδw,w′ , 〈Tw̄Tw′〉 =
(
(2ω)−1

)w
δw,w′ , (B.3a)

GwmGnw′ = Gwmnw′ + 2ωmδm,nGwGw′ , (B.3b)

TwmTnw′ = Twmnw′ +XmnTwTw′ , (B.3c)

where (B.3a) and (B.3b) follow from (5.1) and (3.13) respectively, while (B.3c)

follows from (B.3b). The solution of the recursion relation (B.3b) is the finite

operator product expansion

GwGw′ =
∑
u

δw,w1u δw′,ūw2(2ω)uGw1w2 (B.4)
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which is a free-algebraic generalization of a familiar decomposition rule for the

product of two Chebyshev polynomials (see also the general one-dimensional oper-

ator product expansion in Eq. (3.17e)). Using (B.2) in (B.4), one also obtains the

explicit form (in this case) of the TwTw′ operator product expansion in (5.14).

In this case, the interacting Cuntz algebra becomes the Cuntz algebra

{am, a†m} ≡
{Bm, B†m}√

2ωm
(B.5)

and the infinite-dimensional free algebra (1.5) has corresponding simplifications due

to the simple forms of G and E in (B.1). We mention in particular that

awa
†

w′ =


δw,w′ if [w] = [w′] ,

au if w = uw′ ,

a †u if w′ = uw ,

0 otherwise

(B.6)

is the simple form of the infinite-dimensional free-algebraic relation (1.5d) in

this case.

Appendix C. Composite Structure of the Master Constraints

Define

Qmwn ≡ πmGwπn + iπmF
†

nw̄ − iFmwπn + Fmwn − FmwFn . (C.1)

The master constraints (3.19a) are Qmwn = 0, but one can show from (3.5) and

(3.9) that

Qmwnp = QmwnB
†
p +BmwQnp (C.2)

without using the constraints. (The cubic terms in π on the right simply cancel.)

Starting with the two-index Q’s

Qmn = BmB
†
n −Emn (C.3)

we may iterate (C.2) to obtain the higher-indexed Q’s, for example

Qmnp = QmnB
†
p +BmQnp , (C.4a)

Qmnpq = (QmnB
†
p +BmQnp)B

†
q +BmnQpq (C.4b)

and one finds more generally that all the Q’s are linear in Qmn. It follows that all

the Q’s are zero when the first one is set to zero:

BmB
†
n = Emn → Qmwn = 0 (C.5)

and so the set of master constraints (3.19a) contain no new constraints beyond

the first.
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Appendix D. Identification of X(β)

Here we will derive, by simple algebra, the functional relation between the gener-

ating function

X = X(β) =
∑
w

βwXw , X0 = 0 (D.1)

and the generating function

Z(j) =
∑
w

jw〈φw〉 , Z(0) = 1 (D.2)

of the ordinary planar parts.

Start by rewriting the generator for the polynomials Tw as follows:∑
w

βwTw =
1

1− βmφm +X(β)
(D.3a)

= (1 +X)−1 1

1− φmβm(1 +X)−1

= (1 +X)−1
∑
w

jwφw , (D.3b)

where we have made the identification

jm = βm
(
1 +X(β)

)−1
(D.4)

between the two sets of free-algebraic sources. Now multiply (D.3) on the left by

φmβm, take the vev and use the definition Xmw = 〈φmTw〉 to get∑
m,w

βmwXmw =
∑
m,w

jmw〈φmw〉 (D.5)

which is just

X(β) = Z(j)− 1 . (D.6)

Combining (D.4) with (D.6) we have

Z(j) = 1 +X
(
jZ(j)

)
(D.7)

or alternatively

X(β) = Z
(
β
(
1 +X(β)

)−1)− 1 . (D.8)

Following Refs. 10 and 8, the relation (D.7) identifies X(β) as a generating function

of connected planar parts.

Similarly, the relation8

Z(j) = 1 +X
(
Z(j)j

)
(D.9)

is obtained by expanding (D.3) with (1 +X)−1 on the right and using (5.28).
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Finally, we can establish the similar relation

Z̄(j) = 1 + X̄
(
jZ̄(j)

)
, Z̄(j) =

∑
w

jw̄〈φw〉 (D.10)

for the alternate generating functions Z̄ and X̄. To derive this result, start with the

relations(
1− βmφ̃m + X̄(β)

)−1
=
∑
w

βwT̃w̄(φ) , T̃w(φ)|0〉 = Tw(φ)|0〉 . (D.11)

These can be derived from Ref. 1 and (5.2a), (5.7) and (5.8), and then proceed as

earlier in this appendix.

Appendix E. Schwinger Dyson as Null State Ward Identities

There are many free-algebraic forms of the Schwinger–Dyson equations, some of

which are discussed in Sec. 8. In this Appendix, we discuss a form of the Schwinger–

Dyson equations which follows from the Ward identities of the infinite-dimensional

free algebra.

This development is based on the null states(
B†w −Gw(φ)

)
|0〉 = 0 (E.1)

which give the null state Ward identities〈
φw̄
′(
B†w −Gw(φ)

)
〉 = 0 . (E.2)

To put these identities in a useful form, we leave the coupling constant-dependent

Gw(φ) terms as they are and evaluate the B† w terms as follows:

〈φw̄′Gw(φ)〉 = 〈φ̃w′B†w〉 , (E.3a)

=


∑
w⊂w′

∏
{ui}=w′/w

〈φui 〉 ,

0 when w is not embedded in w′ .

(E.3b)

The last form is obtained by writing B† w as a product of B†m’s and moving each

to the left using

[φ̃m, B
†
n] = δm,n|0〉〈0| , 〈0|B†m = 0 . (E.4)

This procedure shows that the average (E.3) vanishes unless the wordw is embedded

in the word w′, which we write as w ⊂ w′. In further detail, w is embedded in w′

if the two words can be written as

w = m1m2 · · ·mn , (E.5a)

w ⊂ w′ : w′ = u1m1u2m2 · · ·unmnun+1 (E.5b)

which defines the “quotient set” {ui} = w′/w of words ui uniquely for each

embedding.
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As examples of (E.3) we list

〈Gw〉 = δw,0 , (E.6a)

〈φmGn〉 = δm,n ,

〈φmφnφpGq〉 = δm,q〈φnφp〉
+ δn,q〈φm〉〈φp〉
+ δp,q〈φmφn〉 ,

〈φmGnp〉 = 0 ,

(E.6b)

where (E.6a) was noted in (4.3b).

Appendix F. Perturbation Theory

We work with the dual basis system (8.8) and assume that some zeroth-order system

has already been solved

B†m +E(0)
mn

(
φ(0)

)
B̄n −G(0)

m

(
φ(0)

)
= 0 , φ(0)

p = B̄p
(
1 + X̄(0)(B†)

)
. (F.1)

The general perturbation problem is stated as follows. Given

Gm(φ) = G(0)
m (φ) + λG′m(φ) , Emn(φ) = E(0)

mn(φ) + λE′mn(φ) (F.2)

we want to solve for the corrections to the connected parts Xw

X̄(B†)− X̄(0)(B†) =
∞∑
k=1

λkX̄(k)(B†) =
∞∑
k=1

λk
∑
w

X
(k)
w̄ B†w (F.3)

order by order in λ.

We have

φ = φ(0) + φ′ = φ(0) +
∑
k=1

λkB̄X̄(k)(B†) (F.4)

and we subtract (F.1) from (8.8a) to get the general perturbation equation[
E(0)
mn(φ) −E(0)

mn

(
φ(0)

)]
B̄n −

[
G(0)
m (φ) −G(0)

m

(
φ(0)

)]
= λ[G′m(φ)−E′mn(φ)B̄n] . (F.5)

If we have oscillators for the zeroth-order problem, this general equation simpli-

fies somewhat. But we can work from any zeroth-order problem and get the desired

results by straightforward algebraic computation with (F.5), remembering that the

B operators serve as “dummy” variables, obeying B̄mB
†
n = δm,n.
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