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Extending early work, we formulate the large N matrix mechanics of general bosonic,
fermionic and supersymmetric matrix models, including Matrix theory: the Hamiltonian
framework of large N matrix mechanics provides a natural setting in which to study the
algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry
algebras and free algebras. We find in particular a broad array of new free algebras which
we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric
Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role
of these algebras in solving the large N theory. Most important, the interacting Cuntz
algebras are associated to a set of new (hidden!) local quantities which are generically
conserved only at large N. A number of other new large N phenomena are also observed,
including the intrinsic nonlocality of the (reduced) trace class operators of the theory
and a closely related large N field identification phenomenon which is associated to
another set (this time nonlocal) of new conserved quantities at large N.

1. Introduction

Studies of the large N limit of matrix models have included many intertwined
directions, among which we mention:

Planar diagram summation®
Integration®®

Schwinger-Dyson methods
7,12

6—11

Euclidean master fields

Solution of the Schrodinger equation®:!3

14—20

Phase space master fields
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Large N matrix mechanics!”1°

Reduced integral and stochastic formulations
Stochastic master fields?3:26

Microcanonical master fields2”
Free algebras?-1619,8:28,12,11,26,20,20,30

21-25

Other references and approaches can be found in the partial reviews of Refs. 31-34.
The independent observations in physics”167198 of free or Cuntz algebras in the
large N limit are also intertwined chronologically with the development of these
algebras in mathematics.35739

In this paper, we focus on large N matrix mechanics,
nally introduced to systematize closely related ongoing work on phase space master
fields.'*~16 The approach through matrix mechanics was interrupted, however, in

17719 which was origi-

the early 1980’s after the solution of the one Hermitian matrix model'™'® and the
(one polygon) unitary matrix model.!?

Extending this early work, we study here the large N matrix mechanics of
general bosonic, fermionic and supersymmetric matrix models, including gauged
matrix models such as the n = 16 supersymmetric gauge quantum mechanics,*°
now called Matrix theory.*! Because it is a Hamiltonian approach, large N matrix
mechanics is an ideal laboratory for studying the algebras of the large N limit,
including (reduced) Lie algebras, (reduced) supersymmetry algebras and free alge-
bras. In particular, we will find a broad array of new free algebras in the large N
limit, and we will discuss the role of these algebras in solving the various theories.
To aid the reader in making the transition from the early work, we give here a brief
review of the approach.

Large N matrix mechanics, which follows Heisenberg’s original development,*?
is based on the large N completeness relation!”

1.i\O.><.O|+ZA|rs,A><rs,A\, r,s=1---N (1.1)

for the states which saturate the traced Wightman functions of the theory. Here
[0.) is the ground state of the theory (which dominates the invariant channels by
large N factorization) and {|rs, A)} is a set of dominant adjoint eigenstates of
the Hamiltonian. The large N dynamics is then formulated in terms of reduced
states and operators, using Bardakci’s reduced matrix elements.'® For example,
the reduced completeness relation reads

1=0)(0] + > [A)(A (1.2)

where |0) is the reduced ground state and the states {|A)} are the corresponding
reduced adjoint eigenstates.
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The master fields*? of the theory are the set of reduced matrix elements of the

reduced fields, and have the translation-covariant form!?
M (x) = exp(ipu - )M, (0), (1.3a)
Puv = Pu — DPv, M:(OvA)7 V:(O,B), (13b>

where {p,,, } is the set of energy-momentum differences of the various reduced states
n (1.2). The master fields also satisfy the large N classical equations of motion
715719 which follow directly by taking matrix
elements of the reduced equations of motion and the reduced equal-time algebra

and a set of equal-time “constraints,

of the theory.!®1? In the one-matrix model, for example, the reduced equal-time

algebra takes the “semiclassical” form” 1618

[¢, 7] = 2]0)(0] (1.4)
for any potential. More generally, this gives the large N correspondences:

e master fields <> reduced fields;
e large N classical equations of motion <> reduced equations of motion;
e equal-time constraints <+ reduced equal-time algebra.

In this paper, we shall prefer the equivalent terminology on the right side of this list.
Here is an overview of our main conclusions:

(1) Unified formulation. Large N matrix mechanics provides a unified large N
Hamiltonian formulation of bosonic (see Secs. 2—4), fermionic (see Secs. 2, 5 and
6) and supersymmetric matrix models (see Secs. 5 and 6), as well as gauged
matrix models (see Secs. 2 and 6): the special case of Matrix theory?®4! is
discussed explicitly in Sec. 6. The algebraic structures discussed below can
be straightforwardly generalized to higher-dimensional large N Hamiltonian
quantum field theory,'17

can also be found in large N Euclidean quantum field theory.

and we expect that the same algebraic structures

7,12

(2) Generalized free algebras. The reduced large N theories come equipped with
their own reduced equal-time algebras (see Subsec. 2.5), which generalize
Eq. (1.4). These equal-time algebras are new free algebras in their own right,
and, with the help of the reduced equations of motion, one sees that the equal-
time algebras are closely related to the Cuntz algebra?®

am@ = O0mn, am|0)=0, al ay,=1-]0)(0 (1.5)

and generalizations thereof. The Cuntz algebra (1.5) arises in the special case
of large N bosonic oscillators (see Subsec. 3.1), while other cases show a broad
array of generalizations of the Cuntz algebra, which we call:

aMore precisely, the algebra (1.5), which appeared independently in Refs. 37 and 7, is called the

extended Cuntz algebra in mathematics. A Kronecker-delta realization of the one-dimensional

algebra was also seen independently in large N matrix mechanics.1?
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symmetric Cuntz algebras [Subsec. 3.1; see Eq. (3.10)];

interacting symmetric Cuntz algebras [Sec. 4; see Eq. (4.36)];
symmetric Bose/Fermi/Cuntz algebras [Subsec. 5.1; see Eq. (5.4)];
symmetric Cuntz superalgebras [Subsec. 5.2; see Egs. (5.5) and (5.6)].

Symmetric Cuntz algebras contain two Cuntz subalgebras ((1.5) and a tilde
version of (1.5)) which act respectively at the beginning or the end of large N
words [see, for example, Eq. (2.40)]. We remark in particular on the interacting
Cuntz algebras,

Ap Al = Crn(¢),  Am[0) =0, Al (C7'(¢)), An=1-1[0)(0, (1.6)

where the reduced operator Cp,,(¢), which is a function only of the reduced
coordinates ¢, is determined by the potential.

The interacting Cuntz algebras are a central result of this paper, in part
because they imply a number of new local conserved quantities at large N (see
Subsec. 4.5), including

J=Al (C7H¢)), An, %J:J|O> =0 (1.7)

mn
which follows directly from (1.6). In the original unreduced theory, these quan-
tities correspond to new (hidden) local but nonpolynomial operators which are
generically conserved only at large N.

Conserved nonlocal reduced operators. The local conserved trace class operators
of the theory, such as the Hamiltonian, the angular momenta and the super-
charges, are represented at large N by reduced conserved operators called the
reduced Hamiltonian, the reduced angular momenta and the reduced super-
charges. These reduced operators satisfy reduced algebras (see Subsecs. 2.3,
2.6, 3.3, 5.3, 5.4 and Sec. 6) which are closely related to the unreduced algebras
of the theory. As an example, the reduced Hamiltonian still controls, in the
normal fashion, the time evolution of all reduced operators (see Subsec. 2.6),
although the form of the reduced supersymmetry algebras can be surprisingly
different from their unreduced form in the case of a gauge theory such as Matrix
theory [see Eq. (6.14a)].

The explicit composite forms of the reduced trace class operators can in
principle be determined by solving their reduced algebraic relations, and this is
one of the central problems of large NV matrix mechanics. The generalized free
algebras above are seen to play an important role in the construction of these
reduced operators.

What is most interesting here is that the reduced trace class operators are
intrinsically nonlocal (see Subsecs. 3.2, 3.3, 4.6, 5.3 and 5.5). Early examples
of this general phenomenon were seen in Refs. 18 and 19.

Large N field identification. Because each reduced trace class operator T' (corre-
sponding to a conserved local trace class operator T.) is nonlocal, we find that
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there exists, universally for each T'., another nonlocal operator D,.; in the unre-
duced theory which also corresponds at large N to the same nonlocal reduced

operator
T. (local
(local) — T (nonlocal), (1.8a)
D, (nonlocal) / N
d d d
—T.=-T= —D,s = 1.
dt dt 0 dt T (1.8b)

(see Subsecs. 3.5, 4.6, 5.3 and 5.5). The new large N-conserved nonlocal opera-
tors D, are closely related to the densities of the original local trace class
operators T., and provide us in principle with another class of unreduced op-
erators which are generically conserved only at large N.

(5) Large N fermions and bosons. Large N fermions and bosons are surprisingly
similar, exhibiting some aspects of a Bose—Fermi equivalence (see Subsecs. 5.2,
5.3 and 5.5). This equivalence, which is explicit in the Cuntz superalgebras
above, is another example of the classical nature of the large N limit. In partic-
ular, large N fermions and bosons both satisfy the same classical or Boltzmann
statistics, and the Pauli principle is lost for large N fermions. The equivalence
also makes possible certain large N bosonic constructions of supersymmetry
(see Subsec. 5.4).

The interacting Cuntz algebras have not yet been extended to matrix models
with fermions, although we believe that they can be. Further study in this direction
is particularly important for Matrix theory, where the associated new large IN-
conserved quantities (local and nonlocal) may be related to the question of hidden
11-dimensional symmetry.*!

2. The Setup
2.1. SU(N)-invariant Hamiltonian systems

In this section, we establish our notation for a large class of SU(N)-invariant matrix
Hamiltonian systems, where the symmetry can be global or local. In the course of
this discussion, we will often loosely refer to the group SU(V) as the gauge group
of the theory, whether the symmetry is gauged or not.

We begin with a canonical set of B Hermitian adjoint bosons and f Hermitian
adjoint fermions

[ m 71'17)7'] = iéabém" , [Aam Aﬁb]+ = 6ab6aﬁ s (21&)

a ?
¢t = o™, amt = gm Al = Ao, (2.1b)

a=1---N?, m=1---B, a=1---f. (2.1c)
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The generators of SU(N), sometimes called the gauge generators, are

Ga = G:; = fabc (¢17,n77'£n - %AabAac> . (22)

The dynamics of the system is described by an invariant Hamiltonian H. P
p:i[H'ap}7 p:¢7 7TOI'A, (233‘)
[Go,H.] =0 (2.3b)

which is constructed from the canonical operators.
To go over to a matrix notation, we also introduce a set of N x N matrices in
the fundamental representation of the gauge group®

[Taa Tb} = Z.fabcTc 3 T;f =T, ’ T T,T, = 6ab ’ (243.)
T T, = \/N(Sa,N2 ) (Ta)rs(Ta)uv = sulrv ’ r,s=1---N (2'4b)

and define the adjoint matrix fields as

" =o' T, " =aT,, Ao = Ao Ty, (2.5a)
m m m m T
( rs)T = Dgr (ﬂ-rs)T = 7rsr7 ((AG)T‘S) = (Aa)sry (25b)
[ 77=ns7 7731;] = i(smn(ssu(srv 3 [(Aa)rsy (Aﬁ)uv}+ = 6aﬂ65u61‘v . (250)

The corresponding form of the gauge generators is
Grs = Go(To)rs = (—i[@™, 7] — AgAa + (F — B)N),s, (2.6a)

Gl, =Gy, TrG=0, F:g, (2.6b)
[Grs, H.] =0. (2.6¢)

See Sec. 6 for the corresponding forms when the matrix fields are traceless.
We consider next the traced Wightman functions

(:0[Tx(pa(t) - pu(tn))[0.),  p=¢, morA, (2.7)

where |0.) is the vacuum or ground state of the theory (see below for the case of
degenerate ground states). For gauged matrix models, these are the invariant Wight-
man functions in the temporal gauge, where the missing factors T exp (2 [ dtAg (t))
are unity.

The channels of the traced Wightman functions are defined as

(-0 (pr(t1) -+~ pi(ta)) s (Pit1(tis1) -+ pu(tn)) . 10-) (2.8)

PThis H. is the ordinary Hamiltonian of the system in the Heisenberg picture; the purpose of the
dot subscript is to distinguish certain objects in the original, unreduced theory from their reduced
counterparts.

°The normalization in (2.4) corresponds to a? = 2 for any root a of SU(N).
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and the subset of Hamiltonian eigenstates which saturate the channels span a
Hilbert space. At finite IV, these states are the set of all invariant and adjoint
eigenstates. The Hilbert space simplifies, however, at large N because large N fac-
torization tells us that the ground state |0.) dominates among the invariant states.
Moreover, a certain dynamically-determined subset of the adjoint states |rs, A) may
dominate at large N. This situation is summarized by the completeness relation!”

1. = 0.)(.0] + 2;4\7~5,A><m,A| (2.9)

for the large N traced Wightman functions. In further detail, we may specify the
properties of these time-independent states as

H.|0.) = Ey|0.), H.|rs,A) = Exlrs, A), (2.10a)

Ey=O0(N?), E,—E,=0N°%, u=(0,4), v=(0,B), (2.10b)

Grs|0.) =0, Grslpg, A) = 6,qlps, A) — dsp|rg, A), (2.10c)

|rr, A) =0, (rs,A|0.) =0, (rs,A|pq, B) = Psr pg0aB, (2.10d)
1

Psr,pq = 6rp65q - N(ssrépq ) Prs,pqpqp,tu = Prs,tu ) (2106)

where P in (2.10e) is a projector. In the large N matrix mechanics of gauge theories,
the ground state |0.) is the only state which satisfies the Gauss law in (2.10c),

d16:19 as well to saturate the

although the adjoint eigenstates |rs, A) are neede
channels of the invariant Wightman functions.

For bosonic systems, one expects that the ground state |0.) is unique, but for
systems with fermions the completeness relation (2.9) should generally include the

sum over a set of possibly degenerate ground states {|0.);},

1. = 10.);:(.0] + ZA |rs, A)(rs, A, (2.11a)
Grs)0.); =0, H.|0.); = Ep|0.);, 4(.0]0.); = &;; (2.11b)

to be dynamically determined as well. For simplicity we will continue to treat the
ground state as unique, and the explicit examples of this paper are limited to cases
where the ground state is unique or is believed to be unique, as in Matrix theory.
Our discussion below goes through as well, however, for degenerate vacua, and the
reader can obtain the corresponding results by appending a subscript ¢ to each
vacuum state with the summation convention of (2.11a).

2.2. Reduced formulation

The large N theory can be reformulated in terms of reduced operators which act
in a reduced Hilbert space.'®"® The reduced ground state |0) and the dominant
reduced adjoint eigenstates | A) are in correspondence with the true ground state
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and dominant adjoint eigenstates |0.) and |rs, A). These time-independent states
satisfy the reduced completeness relation

L= |mul =100+ [A)A] (2.12)
n=(0,4) A
in the reduced Hilbert space. The reduced quantities are related to the original,

unreduced quantities of the theory via reduced matrix elements which we illustrate
first for the bosonic fields ¢:

(0] ﬁ)m 5,2 (016m(H)]0) (2.13a)
(0| \/71|pq, A) = F(N)Prapa (0]l A), (2.13b)
<pQ7A‘ ‘O > (N)PQP7TS<A|¢m‘O>7 (2'130)

\/—

2 Jst. ) <sq,Af}

(v, Al S i, B) = (pr, 4] ﬁ\ts,3>:Pqp,ts<A\$m\B>, (2.13¢)

Oml0) = dm[0),  {0dm = (0[dm (2.13f)

m

(pg, Al

|rt, B) = Pyp.rt(A|pm|B), (2.13d)

0 = (v - %) , (2.13)

where P is the projector defined in (2.10e). All the operators above are evaluated at
time ¢, although we have written this explicitly only in (2.13a). The same definitions
apply for 7 (take time derivatives of all definitions in (2.13)) and also for A, which
defines a map from the original operators to the reduced operators

m m ms  Tm, Mo,
N % % = {zm o (2.14)
It follows for example that
ol =p, ol =5, p=¢, m or A, (2.15a)
pl0) = pl0),  (0[p={(0lp,  p[0)=p|0). (2.15b)

The reduced matrix elements (2.13a)—(2.13d) were studied in Refs. 16-18, but the
reduced matrix elements which define the reduced tilde operators g in (2.13e),
(2.13f) are new and the new tilde operators will play a central role in this paper.

According to (2.13d), (2.13¢), the existence of two distinct reduced operators p
and p for each unreduced p,s corresponds to the presence of a symmetric and an
antisymmetric adjoint representation

(adjoint) ® (adjoint) = (singlet) & (adjoint) @& (adjoint)’ & - - - (2.16)
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in the product of two adjoint representations of SU(N). A related interpretation of
the tilde operators is noted in App. A.

We consider next the evaluation of matrix elements of matrix products at equal
time. Using the matrix elements of the canonical operators and the completeness
relations (2.9), (2.12) one finds that

s o) B )
<.o(\/]v m)rs|o.>am<0|¢ml<t> b (D]0) (2.17a)

= 675(01dm,, (£) - dm, (1)[0), (2.17b)

A _ a
<.0|( e ﬁ)mmq,m—f(N)PTs,pq<0|¢ml ) (218)

= f(N)PTS,pq<O|(Z~5mn e (Z;ml |A), (2.18b)

<pQ7A<\/N"'\/N>TSO'>f(N)Pqp,rs<A|¢m1"'¢mno> (2193)
= f(N)Pqp,TS<A|(£mn T éml ‘0> ) (2-19b)

= Pyprt(Al|p1p2p3| B), (2.20a)

PP ps a2 o\
<pq,A(\/—N\/—N\/—N)TS|tT,B><p,A(\/N\/N\/N)th aB>

= Pyp,ts(Alp1p2p3| B) , (2.20D)

p1p2p310) = p1p2ps|0) , (2.21)

where p1, p2, p3 can be any of the canonical operators. All the operators above are
evaluated at time ¢, although this is explicit only in (2.17).

The (a) parts of each of these results can be extended to the product
p1(t1) - - - pn(tn) of any number of operators at arbitrary times, for example,

p1(t1) pn(tn)
<.0|Tr< N N

so that all the traces of the theory are computable in terms of the reduced quan-
tities. Recall that, for locally invariant theories, these are the invariant Wightman
functions in the temporal gauge. For globally invariant theories, a broader class of
invariant Wightman functions is discussed in App. B.

The (b) parts of these results and (2.21) can also be extended to define the
tilde of the composite operator p; --- p,: When all the operators in the original,

)o.> = N(Olp1 (1) pult)]0) (2.22)
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unreduced matrix product commute, one finds that the tilde of the reduced product
is just the product of the tilde operators in the opposite order. This applies for
example to the case of a general equal-time function R of the ¢ fields,

o0
R6) = 32 b
n=0
. (2.23)
R(Qg) = er(’sl)mmn(;mn T éml >
n=0
where {r} are arbitrary coefficients and E(\g{) = R(4). Note that this relation is
consistent with the (b) parts of (2.17) through (2.20). The same relations (2.23)
hold when all the ¢’s are replaced by 7’s at equal time.

The tilde forms do not, however, extend in such a simple manner when the
unreduced operators fail to commute, including, for example, a mixed product of
¢’s and 7’s at equal time or a product of ¢’s at different times. The tilde of a general
equal-time product is determined in Subsec. 2.5 and App. D, but, owing to the
complexity of many-time commutators, we will not discuss the tilde of many-time
composite operators. Unless specified otherwise, all the operator products below
are taken at equal time.

This completes the definition of the general equal-time reduced operators R, R
which correspond to the general equal-time matrix products (and sums of products)
R,s of the original canonical operators:

<.0|Rrs(\/%) 10.) = 8,4(0|R(p)]0), (2.240)

(O Res(= ) 100:4) = () Prap 01 ). (2.21b)
00,418 (L2 )10 = ) P (AL RUB)I0). (2240
0,412 ) 58.5) = P AR B). (224)
0. AR (2 ) 17, B) = Pyl ALR(G) ), (2.240)
Rip) = k(). R(G)I0) = R@I0), OIR(G) = 0Rp), (2240

where p is the set of canonical variables. In what follows, we shall refer to any
operator of this type as a density class operator or simply a density.

2.3. Trace class operators

A trace class operator T. is an invariant operator which is the trace of a density,
such as the Hamiltonian, the angular momentum generators or the supercharges of
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the theory. The reduced matrix elements and reduced operators T' which correspond
to any trace class operator 7. are defined as

T. = C(N)Tr (t(% \/iﬁ %)) , (2.25a)

(-0[T.10.) = (0]T[0) = NC(N){0[t(¢, 7, A)[0)
= NC(N)(0[i(¢, 7, A) 0), (2.25b)
(A|T]0) = (0|T|A) =0, (2.25¢)
(pq, A|T.|rs, B) = Py,»s(A|T|B), (2.25d)
where (2.25b) is nothing but the trace of (2.24a) above. The definitions in (2.25c¢)

and (2.25d) are required for the consistency of multiplication of reduced trace class
operators, and are also consistent with (2.24). We leave the constant C'(/N) undeter-
mined here, but we will see below that C(N) = N is selected for the usual Hamil-
tonian, supercharges and angular momenta.

The unreduced operators T. are important quantities which generate the
dynamics and internal symmetries of the theory, and we will see below that their
reduced counterparts T still generate the same important transformations in the
reduced theory at large V. The reduced Hamiltonian H, which generates the time
translations of the reduced theory, was constructed in Refs. 18 and 19 for the one
Hermitian and the (one polygon) unitary matrix models.

For all such quantities, we encounter here an “opacity” phenomenon which was
seen but not emphasized in the examples of Refs. 18 and 19: the composite struc-
ture of the reduced operator T is apparently computable at this level only for the
vacuum expectation value, as given in (2.25b), but not for the adjoint matrix ele-
ments in (2.25d). Technically, the reason is that the trace class operators are formed
from adjoint operators but an adjoint operator acting on an adjoint state generally
contains higher representations than singlet and adjoint, so that we cannot straight-
forwardly saturate the adjoint matrix elements of a trace class operator with the
states of our reduced space.

So, the opacity phenomenon means that we do not yet know the composite
structure of reduced operators T' (only that the vacuum expectation value of T
must equal the forms shown in (2.25b)). Nevertheless, it is known from Refs. 18
and 19 that the composite structure of these reduced operators can be found by
solving their reduced algebraic relations, and we will place special emphasis on
the construction of these operators below (see Subsecs. 3.2, 3.3, 4.6 and Sec. 5).
In particular, we will see that the reduced trace class operators are intrinsically

nonlocal, in accord with the early examples.'319

2.4. Derived maps

In this section, we use the formalism above to infer a number of derived maps into
the reduced space. Applications of these maps are given later.
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(A) Gauge generators

Counsidering the matrix elements of the gauge generators G, in (2.6a) we find from
(2.10c) that

(s Tm] — iMoo = [Gm, Tm] — ihaAo = i[(B— F —1) + |0)(0]] . (2.26)

These relations are written as part of the reduced equal-time algebra of the theory,
according to the original interpretation in Ref. 18. Because G, is a density, how-
ever, these relations can be equivalently understood as the action of the reduced
symmetry generators G, G on the states,

G = —i[pm, mm] — AaAo + (F — B),

R ~ L (2.27a)
G = i[pm, Tm] + AaAo + (B—F),
Gt=a@, Gt =@, (2.27h)
G=-G=1-10)0], (2.27¢)
Gl0) =G|0) =0, G|A) =—-G|A) = |A). (2.27d)
(B) Density maps
For each density relation R,.s = 0 we obtain a pair of reduced equations
oL ) =0 Rlp.) = R3. ) =0, (2.28)
VN’ VN

where p includes all the canonical variables. Similarly, if R,s|0.) = 0, then R|0) =
R|0) = 0.

This map gives us, for example, an untilde and a tilde version of the reduced
equations of motion (see for example Subsec. 2.6).

(C) Canonical maps
When p and o are any of the canonical variables ¢, m or A, we find that
[Preos Opals = i€Bupdrg = 5yl = [p, 55 = ic|0)(0) (2.20)

which is derived by considering matrix elements such as

<-OH:0T870'SQ]:F‘O->7 <p37AHPr37qu]:F‘an>~ (2'30)

These contributions to the reduced equal-time algebra of the theory are free alge-
braic relations because they contain no relations among the untilde operators or
among the tilde operators. See Subsec. 2.5 for further discussion of the equal-time
algebra.
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(D) A density and a trace class operator

The form of relations involving the product of a density and a trace class opera-
tor are preserved in reduced space. We phrase this in terms of commutators and
anticommutators:

p | L e )

[T.,RTS(W,W)L S(W\/N) (2.31a)
[T7R(p7 P)h: = S(p7 P),

{ [T, R(p, p)|+ = S(p. p) , (2.31Db)

where R, and S,¢ are general densities. This map gives us for example the com-
mutator form of the reduced equations of motion in terms of the reduced Hamil-
tonian H,

p=ilHpl, p=iHp, p=¢ m orA (2.32)

which supplements the explicit form of the reduced equations of motion obtained
from the map (2.28). Moreover, the reduced images of (2.6c) are

G=G=[G,H =[G,H =0, (2.33)

where G and G are the reduced gauge generators in (2.27). The map (2.31) also
tells us that the transformation properties of the reduced operators ¢, = or A under
the reduced rotation or supersymmetry generators is unchanged by the reduction
(see Subsecs. 2.6, 3.2 and 3.3 and Secs. 5 and 6).

(E) Two trace class operators

Algebraic relations among trace class operators are preserved in the reduction:
[T.l,T.Q]:F =T.3— [Tl,TQ]:F =1T3. (2.34)

This map tells us, for example, that the angular momentum algebra or the super-
symmetry algebra of the theory is preserved in the reduction (See Subsecs. 2.6, 3.3,
5.3, 5.5 and Sec. 6). In the case of a gauged matrix model such as Matrix theory,
however, the explicit form of the reduced supersymmetry algebra [see Eq. (6.14a)]
can be surprisingly different from that of the original unreduced supersymmetry
algebra.

2.5. Reduced equal-time algebra

In this section, we familiarize ourselves with the reduced equal-time free algebras of
the general matrix model, temporarily deferring the contributions of any conserved
quantity.
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The explicit form of the reduced equal-time algebras follows from (2.26)
and (2.29):

(s Tn) = [Grms T] = 101 [0)(0] (2.35a)

[ &n] = [Tm, Tn] =0, [Aa, Agls = 3ap|0)(0], (2.35b)

[Aangm] = [Aaagbm} = [Aayﬁ'm] = [Aa,ﬂ'm} = O, (235C)

(> Tm] — ihaAa = [Gm, Tm] — ihaAo = i[(B—F —1)+[0)(0]],  (2.35d)
m,n=1---B, a, f=1---f, F:g, (2.35¢)

where B and f are integers. The equal-time algebras (2.35) provide our first ex-
amples of symmetric free algebras, so-called because each algebra is symmetric under
the exchange of tilde and untilde operators:

pep, p=¢, mand A. (2.36)

Historically, a Euclidean operator isomorphic to 7 in (2.35a) was first introduced
in Ref. 7, and later as a differential realization in Ref. 12.

In what follows, we discuss a number of properties of the symmetric free algebras
(2.35) in combination with the vacuum relations (2.15b) and (2.24f), which we
repeat here for reference

710) = pl0). (015 = (0], (2.37a)
R(7)|0) = R(p)|0),  (0|R(p) = (0| R(p). (2.37b)

(A) Consistency check
We note that (2.37) and the vacuum expectation value of (2.35d) imply the relation

(1[G Fo] — 5lAar Al 0) = i(B — F) (2.39)

which is consistent with (2.35a) and (2.35b).

(B) Tilde operators as right multipliers

Cousider a general state (word) formed by the action of any number of ¢ operators
on the vacuum (fermionic operators can be added as well). The action of another ¢
on the state is of course the addition of the operator on the left of the word. On the
other hand, (2.35b) and (2.37) tell us that the action of a ¢ operator is equivalent
to adding a ¢ field on the right:

¢m¢m1 T ¢mn |O> = ¢m1 T ¢mn¢m ‘0> . (239)

In word notation, the action of ¢ and ¢ is
(w) = ¢|0) = Gy s+ * i,y [0), W =mama---my,  (2.40a)
bm|w) = [mw), G |w) = [wm) . (2.40Db)
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(C) Cyclicity of ground state averages

The equal-time reduced vacuum expectation value of any number of reduced ¢’s is
cyclically symmetric. To see this use (2.35b) and (2.37) to follow the steps:

(0] By sy +* D [0) = (0] By i+ + P, |0)
= <0|¢m2 "'¢mn€5m1‘o>
= (0] ms - P by |0) - (2.41)

According to (2.17a), this result is only the image in reduced space of the cyclic
property of the unreduced equal-time traced Wightman functions.? We emphasize
however the central role of the tilde operators in establishing this property directly
in the reduced space.

The same cyclicity is found for the vacuum expectation value of many reduced
7’s, as expected, but vacuum expectation values of mixed products of ¢’s, 7’s and
N’s are generally not cyclic. Following steps similar to those in (2.41), however,
the corrections to cyclicity can always be computed directly from the equal-time
algebra and (2.37). Here are some simple examples

(016 10) = (011 0) + 1 (2.42a)
(0]/AaAs]0) = —(0|AgAa|0) + Sus (2.42b)

which the reader is invited to verify.

(D) Tilde of general reduced densities

The R corresponding to a general composite density R is defined in Subsec. 2.2 and
satisfies (2.37). The form of R is simple when the operators of the original density
commute, as noted in (2.23). We give here a useful algorithm for the form of the
general R which nicely packages the results of App. D: One can compute R from R
using the equal-time algebra and (2.37), remembering that R is a function only of
tilde fields. This means that we eliminate any vacuum projectors |0)(0| which arise
by using the identity |0)(0]|0) = |0). As a simple example, consider

ST |0) = ¢mTn|0) = [dm, Tn][0) + Tnpm|0)

= (i6mn + Tndm)|0) (2.43)
which tells us that
($rmTn) = T + 16run (2.44)
Another example is R = Ay ¢ Agmy,, for which we find
R=—7nAgdmAa +i6mn(0]Ag|0)Ag + Gas(0|dm |0)7, . (2.45)

dRelated identities such as (0|[R(¢), S(¢)]|0) = 0 also follow in the same way from (2.37b)
and (using the results of App. C) we see that this identity is the image of N~ Tr[R(¢/vN),
S(¢/v/N)] = 0 in the unreduced theory.
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The form of the reduced gauge generator G in (2.27a) is also easily computed in
this way from the form of the reduced gauge generator G.

(E) An even number of real fermions

When the number of real adjoint fermions is even, we may introduce complex
reduced fermions as

1 [ 9L+ . .

and similarly for A, — 1&;, ¥s. Then the fermionic part of the reduced equal-time
algebra becomes:

[wd:&;]-ﬁ- = hzéuwg]-f- = 6aﬂ‘0><0| )

- _ (2.47a)
e Bgl+ = Wl 9L)+ =0,
[¢m7ﬂm] - i[¢ay¢l]+ = [(gmyﬁ-m] - Zl[quﬂ;g]-‘r
=i[(B—F—1)+0)(0]], (2.47b)
$al0) =940y, L0y =wl|0). (2.47c)

The complex fermionic operators continue to commute with the bosonic tilde
operators and vice-versa with respect to the tilde.

This decomposition allows us to see many of the properties discussed above for
the bosonic operators. For example the relation

Slwl ol 0) = (1)l -l wl]o) (2.48)

shows that q/NﬂL is a right multiplication operator with respect to the daggered
fermionic words. Similarly, the tilde of the composite fermionic operators

R=gf, vl ,  R=(1)"09f 9l (249)
is easily computed from (2.37) and (2.47a).

2.6. Example: general bosonic system

As an explicit example, we collect here the setup for a general system of B bosons,
starting with the Hermitian Hamiltonian

H. =T (57'(' ™ +NV<— N)) s (2503)
_ © .\~ 1 mi e
Tr V(g) = 'ﬁ(v 0 4 7?:1 - Upny e, @ 10) ) , (2.50b)

qu?l)mz...mn = qu?z)mmnml ,  (Tr V)Jr =TrV, qu?l)f.mn = v,(,?,)bmml ,  (2.50¢)
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where the numerical coefficients v(") of the potential are cyclically symmetric in
their subscripts. These coefficients are also independent of N to maintain 't Hooft
scaling at large N. Comparing (2.50a) with (2.25a) we see that C(N) = N for the
Hamiltonian, as noted above.

Going over now to the reduced formulation at large IV, we record first the equal-
time free algebra of the system

[Brms Tn) = [y Tn] = i6mn|0)(0] ,

[bm, $n) = [Fm, ma] =0,

(> Tom] = [Py Tm] = i[B — 1+ [0)(0]], (2.51c
pl0) =pl0), (0[p=(0[p, p=¢orm (2.51d

and then the reduced equations of motion

b = i[H, o] = T Tom = i[H, Tpm] = =V ($), (2.52a)

¢m = Z'[H7 (gm] = Tm 7;7m = Z'[H7 ﬁm] = _Vré((g) ) (2'52b)

V7:l(¢) = Z Ugr?r)n?--mngbmz T ¢mn »
n=1

(2.52¢)
f/;;l(q;) = Z vv(ﬂg7)712~~~mn(£mn e (gmz )
n=1
Vil =Vo,  Vil=Vi, o Vpl0)=V,00) (2.52d)

are obtained from the original equations of motion and maps (B) and (D) of Sub-
sec. 2.4. Here H is the reduced Hamiltonian of the system which satisfies

Fo = (.0|H.|0.) = (0| H|0) = N2<0|%Wm FV@)0),  (253)

(H — Ep)|0) =0, (H—Ey)|A) =waolA), (2.53b)
wu =E,—E,=0(N°, p=(0,4), v=(0,B) (2.53¢)
and governs the time dependence of the reduced system!'”'® according to
p(t) = eMp(0)e™, j(t) = eMp(0)e™ " (2.54a)
Pt = €< p(0),  pt)u = et 5(0) (2.54b)

where p = ¢ or m. As noted in the Introduction, the matrix elements in (2.54b) are
the master fields of the theory, and the results (2.54) hold as well in general matrix
models including fermions. As emphasized in Subsec. 2.3, we do not yet know the
composite structure of the reduced H.

In what follows, we discuss a number of useful aspects of this system.
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(A) Connection and curvature

Define a connection on the free Hilbert space as the collection J = {Jn(¢),
Jm(¢),m = 1---B} where J,,(¢) is a set of reduced densities whose tildes are

Jm. Further define the curvature of the connection J as

Frn(J) = [Ty In] = [Fny Jom) - (2.55)
As an example, use the equations of motion to compute
d -
E[wm,frn} =0 [n, V] — [mm, V2] =0. (2.56)

This shows that V' = {V/,, V" }, which is a natural “gradient” associated to the
reduced potential V', is a flat connection on the free Hilbert space,

Fon(V') =0. (2.57)

We have also checked that the notions of flat connection and cyclic coefficients
are equivalent: Any connection J of the form

Jm(¢) = Zjﬁ:'ﬁr)n2“‘mn¢m2 T ¢mn )
n=1

N (2.58a)
jm((g) = Z er:ngman;mn T Q;mz )
n=1

is flat and we have also solved the flatness condition to prove that any flat connection
has this form. The notions of flat connection and integrability are equivalent as
well, so that every flat connection on the free Hilbert space is associated to a trace
class generating function of the form (2.50b) in the unreduced large N theory. Flat
connections will play an important role in the development of Sec. 4.

(B) Rotational invariance

We consider the special case when the original bosonic theory is rotation invariant
with trace class generators J!™":

Jm = Tre(almg™), m, n=1...B, (2.59a)
Jmr —i[H., J™ =0, J"[0.)=0 (2.59b)
which satisfy the algebra of spin (B). The operators ¢ and 7 are in the vector

representation of spin (B), and (2.59a) specifies the constant in (2.25a) as C(N) =
N. At large N, these generators map onto reduced generators J,,, which satisfy

<0|Jmn|0> = <O‘7T[m¢n] ‘0> =0, (2.60&)

Imn = t[H, Jmn] =0,  Jmn|0) =0, (2.60b)
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[Jomns Bp| = =i0pmBn), B=¢, 7, or, (2.60c)
[Jmna Jpq} - .(6q[m‘]n]p - 6p[mJn]q) (260(1)

including (according to map (E) of Subsec. 2.4) the same algebra of spin (B). As in
the case of the reduced Hamiltonian H, we do not yet know the composite structure
of the reduced generators J,, (see Subsec. 2.3).

(C) One Hermitian matriz

The case B = 1 above is called the (Hamiltonian) one Hermitian matrix model,

17,18 we review here as a special case of our general development.

whose solution
We have seen above that untilde and tilde operators correspond respectively to
left and right multiplication in the word notation [see Eq. (2.40)], but left and right

multiplication are indistinguishable when B =1, so that
B=1:¢=¢, 7=m. (2.61)

The identification (2.61), which does not hold for higher B (or for B = 1 and
F # 0), is the essential simplification of the one-matrix model. Then the reduced

system reads simply!”1®

¢p=1i[H,¢|=m, 7 =1iH,7]=-V'(¢), (2.62a)
(¢, 7] = [0)(O], (2.62b)
p(t) i = € p(0) o p=¢orm, (2.62c)

where the master fields are given in (2.62c).
We mention two early approaches to the solution of this model. The case of the
oscillator was solved in Ref. 17:

1 1 ) )
V== 22’ — ezth+e—zwta’
W 1) 1) m( a )
(2.63a)
T = Z'\/g(eiwtaT _ 67iwta)
2 )
(aT)HV = §H,V+1 ) (a),uu = 6;1,1/71 , (263b)
aa' =1, al0)=0, afa=1-10)0]. (2.63c)

This solution was originally written with Kronecker deltas, as in (2.63b), but we
recognize this today as a realization of the one-dimensional Cuntz algebra in (2.63c).
We will return to this approach for many oscillators in Sec. 3.
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The general system (2.62) was solved!® in the coordinate basis:

bla) = ala), myq = iﬁwom)wa(q’) , (2.64a)
(H — Eo)gy = ————to(@)t5 ()
o (g—q')? 0
+0(g—d) / dq//ﬁp(q”) , (2.64b)

p(q) = ¥ (a)vo(q) = ? (e—V(g)

N

, / dgp(g) =1, (2:64c)

(0[¢"™]0) = /dq p(0)q" , (2.64d)

where P is principal value, ¥y is the reduced coordinate space ground state wave
function, and sub g, ¢’ denotes matrix elements in the coordinate basis. See Ref. 18
for further details of this solution, including the ground state energy Fy and the
energies of the dominant adjoint states. We note in particular the explicit construc-
tion (2.64b) of the reduced Hamiltonian H, whose composite structure is seen to
be highly nonlocal. A similarly nonlocal reduced Hamiltonian for the (one polygon)
unitary matrix model was obtained in Ref. 19. This approach is also considered for
higher B in Subsec. 3.6.

3. Bosonic Oscillators
3.1. Symmetric Cuntz algebras

In this section we consider the special case of B bosonic oscillators

1 &,
V=23 T;wm%(ﬁm , (3.1a)
bm = i[H, ] = T, Tom = i[H, Tpm] = —w2,dm , (3.1b)
b = i[H, bm] = Ty Fm = i[H, ] = —w2 b (3.1¢)

in order to understand the relationship between our equal-time free algebra (2.51)
and the Cuntz algebra (1.5).
The solution to the reduced equations of motion (3.1b) and (3.1c) is

1

¢m — (eiwmtaT + e—iwmtam)7
V2w m
wm ' _ (3.2a)
T = 04— (e@mtal — e mtq, Y,

2
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~ 1
N V 2Wy,

(6iwmtd;[n 4 efiwmtdm) ,

(3.2b)
Tm = i\/%(ei“’mtdfn —e~mta,,)
and we know that
@ |0) = @m|0) = (0laf, = (0la}, =0, (3.3a)
af,[0) = al,[0),  (0[@m = (0fam - (3.3b)

The relations (3.3) follow from the maps of Subsec. 2.4 because the corresponding
matrix creation and annihilation operators (aT)rs, a,s are densities. We can also
define time-dependent creation and annihilation operators

1

am(t) = 5 (Wi Gm + i7) = e~ “mta,, | (3.4a)

8-

(wm¢m - Z.7"'m) = 6iwmta1'n (34b)
2wy,
and similarly for @,,(t), @}, (t). The time-dependent creation/annihilation operators
also satisfy (3.3) and, similarly, the relations below can be read in terms of either
the time-independent or the time-dependent operators.
In terms of these operators, the equal-time algebra (2.35) now reads

[amvdl] = [dM7aM = dmn|0)(0], (3.5a)
[am7dn] = [G‘Im &M =0, (35b)
(amsal,] = sl = B — 1+ 0)(0] (3.5

We consider next the construction of complete sets of states, using (3.3) and (3.5).
Any state involving mixed untilde and tilde creation operators on the vacuum can
be expressed entirely in terms of untilde creation operators, e.g.

al ooab gt co.gt oof ...a;q‘m

m1 mp N1 Nm —P1

:ajnl...af al «o.al af ...ajh|0>_ (3.6)

mn "P1 Pqg "Nm
Similarly, mixed states involving a’s and a!’s can be expressed entirely in terms of
a'’s. To see this follow the steps

amain1 ~-~a1nn\()> = amdinnn-&Inl\m

= [am, al, ---af, ]/0)
=af, @b, 0mm, |0)
= Ommyaby, -+ al, 10), (3.7)

where we have used the relation

[, @l]aS, = 6mn]0)(0]al =0 (3.8)

n

which follows from the equal-time algebra and (3.3). It follows from (3.6) and (3.7)
that the a' states are complete.
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The relations (3.6)—(3.8) are also true, however, under exchange of tilde and
untilde labels, so that the &' states are also complete

{ain1 ~-~a1nn |0)} = {&Inl ~-~dinn |0)} = complete set of states, (3.9a)

(o9}
1= al, -al, 10)(0lam, - am,
=0

:Zd;fnl...@mn|0><0‘@mn...dml7 (3.9b)
n=0
by, -l [0) = aly, ---al,, [0). (3.9¢)

Indeed, the tilde states can be rewritten in terms of the untilde states,® as shown
explicitly in (3.9¢).

Since (3.7) and its tilde <» untilde version are true on complete sets of states,
we have established the full equal-time algebra of the reduced creation/annihilation
operators

amal, = @mal = 6pn, m, n=1---B, (3.10a)
al = al am =1—10)(0], (3.10b)
[am, L] = [@m, al] = 6mnl0)(0],  [am,an] = [a},,af] =0, (3.10c)
am\0>—am\0>:<0\am:(0|am: , (3.10d)
al 10y =al 10,  (0]@m = (0]am . (3.10e)

In particular, the argument (3.7) on all a' states gives the ordinary Cuntz relation
(see (1.5)) in (3.10a), and the tilde <+ untilde version of (3.7) gives the tilde Cuntz
relation in (3.10a). Then (3.10b) follows from (3.10a) and (3.5¢). In what follows,
these algebras will be called symmetric Cuntz algebras: each algebra is symmetric
under the interchange of tilde and untilde operators, and contains two Cuntz sub-
algebras (untilde and tilde).

3.2. Reduced Hamiltonian

Using (3.2) and the symmetric Cuntz algebra (3.10), it is straightforward to com-
pute the large N ground state energy for the oscillators

N2
Eo = (0] H|0) = (0] Y _(mm T + Wi dmm) 0)

N2

5D wm (3.11)

m
where H is the reduced Hamiltonian. The reduced Hamiltonian also appears in
the reduced equations of motion (3.1b), (3.1c) and, using these relations, it is not
difficult to construct the reduced Hamiltonian explicitly in this case.

°For B = 1, Eq. (3.9c) implies that @' = a' and hence @ = a, in accord with (2.61).
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The reduced Hamiltonian has many equivalent forms, beginning with

H-FEy= Z a;fnl = -a;fnn (aTwa)am, - - Gm, (3.12a)

= Z a’m1 mn Twa’)a my """ dml 3 (312b)

= Zamwmam. (3.12¢)

These forms can be used to check the commutators
[H,al] = wmal, , [H, am] = —wWmm, , (3.13a)
[H,al ] = wmal, [H, Gm] = —Wndm (3.13b)

which guarantee the correct equations of motion. Here is a roadmap for checking
these commutators, all four of which are true for both forms of H in (3.12): consider
first the untilde form of H in (3.12a). In this case the commutators in (3.13a)
are easily checked by writing out each term, using (3.10a) and subtracting. The
commutators in (3.13b) must be computed directly using the mixed commutators
(3.10c), and these come out as

[H,a! ] = wnal, <Zam1 al, ><0amn...aml)wmajn. (3.14)

For the tilde form of H in (3.12b), the two types of computation above are reversed
but the same results are obtained. The results in (3.13) also show that the two
forms of H in (3.12) are equal: the difference A of the two forms is zero because A
annihilates the vacuum and commutes with all the operators of the theory, so that
A = 0 on any state.

Using (3.4), we see that the reduced Hamiltonian H in (3.12) is a highly nonlocal
operator [see (3.25)], and we will see this nonlocality quite generally below for the
reduced trace class operators of the various theories. This is the price one must pay
in using free algebras (which are not local commutators) to solve reduced algebraic
relations such as (3.13).

There are other equivalent forms of H which show its spectrum, e.g.

H-FEy= Z aInl to ainn ‘O>E(m1 s mn)<0‘amn o Qmy (3'153)
(H — Eo)af,, ---al, |0) = E(my---my)al, ---af, |0), (3.15b)
E(my---my) = Zw’”i (3.15¢)

and another form of H is (3.15a) with all operators tilded.

fThe B = 1 form of (3.12a) was given in footnote 8 of Ref. 18 and a number operator of this type
(with w = 1) was later considered for all B in Ref. 12.
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3.3. Isotropic oscillators and angular momentum

We consider next the special case of B isotropic oscillators (w,, = w),

—FEy= wZa (a"1a)am, - am, (3.16)

for which we are also able to find the explicit nonlocal structure of the reduced
spin (B) generators discussed in Subsec. 2.6. One form of the generators is

Imn = Zaml al, (a'Lyppna)am, -+ am, (3.17a)

(aTLmna) = aL(Lmn)klal = iafman] ,

(3.17b)
(Lonn) it = i(8mi0ni — SnkOmi)

Jmn]0) =0, Jmn = i[H, Jn] =0, (3.17¢)
[inns ah] = af (Lo )ik s [Jomns 0] = @ Lonn )i » (3.17d)
[Ty @h) = @ (Lonn)i s [Jonny @) = @1(Lonn )ik (3.17¢)

[mns Jpa] = 10qtmInlp = OpfmIniq) - (3.17f)

The commutators in (3.17d) and (3.17e) are equivalent to (2.60c) and tell us that
the reduced fields transform in the vector representation of spin (B). Another form
of the reduced generators is obtained by replacing all the operators in (3.17a) by
tilde operators, as discussed above for H.

3.4. Algebraic identities

We note here some generalizations of the algebraic identities above.
The reduced Hamiltonian (3.12a) and the reduced angular momentum operators
(3.17a) are special cases of the family of nonlocal operators

Z al,, - TMa)amn C g, (3.18a)
Z ceal, (@' Ma)am, - am, , (3.18D)
(a'Ma) = af Mynan,, (3.18¢)

where M is any constant matrix. For each such M, we find that

(M(M),al,] = al,Mym,  [M(M),am] = —Mpnan, (3.19a)

IM(M),al,] = @l My, [M(M), @) = — Mpnin (3.19b)
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and when M and N are any two constant matrices we also find
[M(M), M(N)] = M([M, N]) (3.20)

so that the algebra of the M’s is faithful to the algebra of the matrices. These
identities include the nontrivial commutators among H and J,,, above, and allow,
for example, the construction of general (reduced) Lie algebras when the reduced
fields are in any matrix representation of the algebra.

Using the same constant matrices, we also consider a second family of nonlocal
operators

MC(M) = Z aInl . -a;fnn (al |0Y My (0] an) Gm, - Gm, (3.21)
n=0
which satisfy
(M (M), af,] = af,[0){0] My,
(3.22a)
[M®(M), am| = —Mpn|0)(0]an,
MC(M)M®(N) = M®(MN). (3.22b)

We see in (3.22b) that products of the M® operators follow the matrix products;
and moreover we find that the M?® operators transform as

[(M(M), M*(N)] = M*([M, N]) (3.23)

so they form a representation of the algebra of M operators above.

3.5. Large N density-trace identifications

In this section, we use the examples above to point out a new phenomenon at large
N which we call large N density-trace identification. This phenomenon involves an
unexpected relation between trace class operators (such as the Hamiltonian, the
angular momenta and the supercharges) and their densities at large N, and the
phenomenon constructs new nonlocal densities in the original unreduced theory,
which are generically conserved only at large V.

We have seen that the reduced conserved trace class operators 7" of the theory
have a highly nonlocal composite structure, although they are the images of local
conserved trace class operators T. = C'(N)Tr(¢) in the original unreduced large N
theory. Given the composite structure of any such reduced operator T', however, it
is not difficult to work backward to construct a new nonlocal density class operator
D,.s which also corresponds at large N (via the density maps of Sec. 2) to T in the
reduced theory. It follows that D, is itself conserved at large IV, at least in the
large N Hilbert space defined by (2.9). Pictorially, we find the 2 to 1 map

T. (local)

D,.s (nonlocal) > ﬁ T (nonlocal) , (3.24a)

T.=T7=0, D, =0 (3.24b)
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in which both the conserved local trace class operator T. and the large N-conserved
nonlocal density D,.s correspond to the same conserved reduced operator T at large
N. As we will see in the examples, the new nonlocal density D,s can be understood
as a nonlocally dressed form of the local density t.s of the original trace class
operator 7. .

To illustrate this field identification phenomenon most simply, we consider the
reduced Hamiltonian (3.12a) and reduced angular momentum generators (3.17a) of
the B isotropic oscillators at unit frequency (w,, =w = 1)

1 , ,
H’EH—EO:ZW(¢—M)m1~-~(¢—m)mn
n=0

X (ﬂ'mﬂ'm + GmOm + Z[Qbm) ﬂ'm])((b + iﬂ')mn T (¢ + Z.7"')m1 s (3253')

ont G — 1)y -+ (0 — i),
=0
( (¢ — i) (@ + im)y) ) (@ + iT)m,, -+ (& + i), (3.25b)
H=Jpm=0,  H|0)=Jn.|0)=0, (3.25¢)

where we have used (3.4) to reexpress H and J,,, in terms of the time dependent
reduced fields ¢(t) and 7 (¢). These forms are easily pulled back to new unreduced
densities H,.s and (Jymn)rs

(H)o = 3 o= [(6— i)™ - (6 — i)™

= (h)pg 4+, (3.26a)
(hO),s = Z(x™ 2™ 4§ +ilg™, 7 (3.261)
(s = i (6= im)™ (6 = im™
X (Gaon) (@ +dm)™ - (¢ + im)™ ]
= (i )rs + -+ (3.26¢)
(Gam)rs = %((b[%"] +almanl 4i(ghman) — glmgrl)y o (3.26d)
(H)rs = (mn)rs =0,  Hps|0.) = (Jnn)rs[0.) =0 (3.26¢)

which also correspond at large N (via the density maps of Sec. 2.4) to the same
reduced operators H' and J,,,. Our construction guarantees that these new densi-
ties are conserved at large N, since they map to the conserved reduced trace class
operators in this limit. (Oscillator examples are special in that the new densities
are conserved at all N.)
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To see that these new densities are nonlocally dressed forms of the original
energy and angular momentum densities of the theory, note that the first terms of
the new densities satisfy

Tr(h(9) = lTr(7rm7rm +¢m¢™) — Eg=H. — Ey, (3.27a)
Tr(j0)) = Tr(almgm) = g, (3.27b)

where H. and J™" are the original Hamiltonian and angular momenta.

Finding new conserved nonlocal quantities in oscillator theories is never surpris-
ing, but these new densities are important quantities in the large N theory since
they map onto the important reduced trace class operators. Moreover, this field
identification phenomenon is apparently universal for each conserved trace class
operator in any large N theory, given the explicit composite structure of the reduced
trace class operator. For more general matrix models, one expects that these new
nonlocal densities are generically conserved only at large N, and only in the large
N Hilbert space defined by (2.9). We will return to this phenomenon for oscillator
supercharges and supercharge densities in Subsec. 5.3 (see also Subsec. 4.6).

3.6. Coordinate bases and the rank of the equal-time algebras

The oscillators also allow us to make some useful comments about the rank of the
equal-time algebras and the corresponding coordinate bases.

For B = 1, the rank of the equal-time algebra (2.62b) is 1, and we may construct
the coordinate eigenstates explicitly for the oscillator:

B=1, ola) = qlq), (3.28a)

%) Z sin ((m + 1), )( Sy (3.28b)

4/sind,
V2cosb, = q, 1= /dq|q)<q\ . (3.28¢)

The coordinate eigenstates are complete in this case, and similarly complete coor-
dinate bases provide the starting point for the solution'® of the general one-matrix
model.

For B > 2, we find that the rank of the equal-time algebra (2.51a)—(2.51c) is 2.
Choosing the commuting set as ¢1 and @2, we may again construct the coordinate
eigenstates explicitly for the oscillators:

B Z 27 [¢17 452} = 07 (329&)
d1lzy) =z|zy),  dalwy) =ylay), (3.29D)
o sin (m+1)6,) sin (n+1)6y) ., 4,
Cs . . (a1)™(a3)™|0), (3.29¢)
m,;:O \/sin 6, 4/sin 8y

1= /dmdy\xy)(:cy\ +A. (3.29d)

|zy) =
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In this case, the coordinate eigenstates are explicitly not complete, since they have
no overlap with more complicated words such as a{aga“O). It follows that the
coordinate-basis approach of Ref. 18 cannot be extended to matrix models with
B >2.

4. Interacting Symmetric Cuntz Algebras

The symmetric Cuntz algebras of Sec. 3 arose in the context of large NV oscillators,
which may be considered to be free theories. In this section, we find the generaliza-
tion of these algebras for arbitrary interactions, which we call interacting symmetric
Cuntz algebras. The final form of these algebras, and their associated new large N-
conserved quantities, are found in Eq. (4.36) and Subsec. 4.5 respectively.

4.1. Generalized creation and annihilation operators

We begin with the invariant, real and nodeless ground state wave function of the
general bosonic system

Yo(¢) = (0[0.), & ={¢/s} (4.1)

in the coordinate basis of the unreduced theory. The explicit form of the ground
state will not be required in this construction. Operating with the matrix momenta
defines a set of matrix-valued functions F™(¢),

a m m T m
= Ww0(¢) = _Frs (¢)¢0(¢) ) (Frs (¢)) = Fsr (¢) (42)

which lead us to generalized matrix creation and annihilation operators

iy 500 (¢)

A7 = S (F0) +im) . (A7) = (PO —in) . (43)
Alo(¢) =0, bo(¢)(A™)rs =0 (4.3b)
for any interaction. A useful property of this system is
0 = [Aps, A7 o) = 5 (I, Fi) = w7, Fpa))ebo(9) (4.40)
(M5 Frs(9)] + [Fpg (0), 7] = 0, (4.4b)

where (4.4b), which may be considered as the ground state integrability condition,
follows from (4.4a) because the ground state is nodeless. Further discussion of these
operators in the unreduced theory is found in App. E, where it is also shown that
F, A and A" may be considered as densities at large N. Here we go directly to the
reduced theory at large N.

Following the line of the canonical maps in Subsec. 2.4, we find first that

(s ()] = [, Fn(8)] = 0, (4.5a)
Fl($) = Fu(9), FlL(0) = Fu(9), Fu(9)|0) = Fu(6),[0),  (4.5b)
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where the reduced operators F,,, F,, are the images of F/?. The result (4.5a),
which is the image of (4.4b), tells us that the pair F' = {F,,, F),,} comprises a flat
connection, Fp,,(F) = 0, on the reduced Hilbert space. It follows that F,, and F,
have the form (see Subsec. 2.6)

Fm(¢) = Z fgLTZLz"'mn¢m2 t ¢mn 5
n=1

- (4.6a)
Fm((rg) = Z fr(r’Lnr)nzanEmn T &mz )

n=1
W mn = Fomamy s Fm, = Fomy (4.6b)

where the as yet undetermined coefficients f are cyclically symmetric in their lower
indices. The reality condition in (4.6b) follows from (4.5b).
We continue with the reduced creation and annihilation operators®

1

1
Ay = E(Fm i), Al = E(Fm — i) (4.7a)
N 1 - . 1 -
A, = E(Fm +iftm), Al = E(Fm — T (4.7b)
An|0) = Ay, |0) = (0] A], = (0] A, =0, (4.7¢)
AL 10) = ALJ0), (0] Am = (0] A (4.7d)

which are the images of the matrix creation and annihilation operators in (4.3).
The state |0) is the reduced ground state of the interacting system. The equal-time
algebra of these operators

[Amv An] = [A;rnv A’IL] =0, (4.8&)
[Am, AIL] = [Am A:rn] = i[ftn, Fin] = i[mm, Fn} (4.8b)

follows directly from the equal-time algebra (2.51) and the flatness condition (4.5a).
The relations (4.7c) and (4.8a) tell us that mixed words involving both A'’s and
Al’s on the vacuum can be rewritten in terms of only Af’s or only At’s. We will
argue in Subsec. 4.4 that both sets of states are complete, at least for potentials in
some neighborhood of the oscillator potential.

The equal-time algebra (2.51) also allows us to compute

- . 1

[Qbma An} = [Qbm)An} = *Eémn‘oﬂm ; (493)

T oafl— it - L

[Om, ALl = [0m, Ap] = \/55mn|0><0\ : (4.9b)
b1, Am ALl = [¢1, AmAf] = 0., (4.9¢)

€Using (2.37), the relation A, |0) = 0 can be written as (Fm — iFm(¢))|0) = 0. According to the
remark below (2.36), this is the Hamiltonian analogue of Haan’s Euclidean equation of motion.”+12
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Equation (4.9c) strongly suggests® that the products AAf and AAT are equal to
functions of the reduced operators ¢ and ¢ respectively, and this intuition is con-
firmed in App. E. We will call these unknown functions C' and D:

The relations (4.10a) comprise two copies of a generalized free algebra for arbitrary
interaction.

The functions C and D are closely related. To see this, we first evaluate the
functions on the ground state using (4.7), (4.8) and (4.10):

Crn(9)]0) = Diuyn(9)[0) = [, Fra][0) = i[mim, ][0 - (4.11)

The first relation in (4.11) is easily solved as

(o9}

Cmn(¢) = Z C"(nglm3“‘mq¢m3 ce ¢mq y (4123,)
q=2

Diin(@) =Y Cffrngecmy Gy - Gma = Coum (), (4.12b)
q=2

Crn(¢) = Dnm(9), (4.12c)

Ot iy = C\hm oo (4.12d)

where the coefficients C'(9) are so far undetermined and the reality condition in
(4.124d) follows from (4.10b). The other relations in (4.11) will be helpful in com-
puting the explicit forms of C' and D below.

We turn now to some explicit computations involving the new operators, re-
turning to formal developments, including completeness, in Subsec. 4.4.

4.2. Starting from F,, ()

Given the reduced operators F), one can in principle compute the potential of the
system, as well as the commutators (4.8b) and the functions C and D which enter
into the generalized free algebras (4.10).

We begin with the relations

0= A,|0) = (F,, —iV")|0), (4.13a)

Fm vagfrzz2~~~mn¢m2"'¢mn>
e (4.13D)

V’I’:’L = Z vﬁ:iLV)n2‘“mn¢m2 e ¢mn )
n=1

b One may conjecture that any reduced operator X which obeys [J)m, X] = 0,Vm may be expressed
as X = X(¢).
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where (4.13a) follows from (4.7c) by the equations of motion (2.52a). Consider the
relation obtained by substitution of the forms (4.13b) into (4.13a), remembering
that ¢ = w. Using the equal-time algebra (2.51), it is not difficult to work out a
sequence of relations beginning with

Tm [0) = iFm(¢)]0) (4.14a)
= i(_émn + Fm(¢)¢n) |0> (4'14b)

which can be used to eliminate all 7 operators and rewrite the relation (4.13a) in
terms of the ¢ operators alone. The coefficient of each ¢ monomial must vanish
separately, allowing us to compute V in terms of F. We record the results of this
computation including the f coefficients through n = 3:

o) = fAFD = £, + (4.15a)
vk = D+ (F8). + fﬁi’m)f“) + (4.15b)
Oy = Lo Lo+ S Foh + 32 fih + - (4.15¢)
Ve = P £+ £ 3, + - (4.15d)
Vohpar = s (4.15¢)

where the dots indicate the contributions of f(™), n > 4. The symmetries of the
v coefficients in (2.50c) are guaranteed by the symmetries of the f coefficients in
(4.6b). This means that V/ = {V/,, V' } is a flat connection, as it should be, when
F = {F,, Fm} is a flat connection. Although we will not present the proof here,
we have checked that this statement is true to all orders in the expansions (4.13b).

We turn next to the evaluation of the functions C' and D in the generalized free
algebras (4.10a). First evaluate the commutators (4.8b)

[Am,ji’f] = [A Al ) =i, Fml
F21000] + £ 10)(0]8p + £L2), 8,]0)(0] + - (4.16)

through this order in the f coefficients, using (2.35a) and (4.13b). For C' and D,
we use (4.11), (4.12¢) and (4.16) to evaluate

( )0) = i[fn, Frn]|0), (4.17a)
<¢> fﬁfh f;i’zp<0|¢>p\0> mpmp , (4.17b)

where the result (4.17b) is obtained from (4.17a) by eliminating vacuum projectors
to obtain a function of ¢ only on the vacuum. Another form of D is found in
Eq. (F.5).
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As a simple check on the results above, we note the special case of the anhar-
monic oscillators

Fup=wnom, Vi =wiom, Cumn=wmndmn, (4.18a)

Fpo=wnbm, Vi =wiém, Dmn=wmdmn (4.18b)
for which the rescaled operators

{am,al, am,al } = {Am, AL, A, ALY /w0, (4.19)

are seen to satisfy the symmetric Cuntz algebra (3.10).

4.3. Basis-independent analysis of the one-matrix model

We have noted in Subsec. 3.6 that the coordinate-basis approach of Ref. 18 cannot
be extended to the case of many matrices. Here, we develop a basis-independent
approach to the general one-matrix model which constructs the generalized creation
and annihilation operators AT, A as well as the exact form of C(¢) in their inter-
acting Cuntz algebra

AAT = C(9). (4.20)

This approach is in principle extendable to many matrices, although we will confine
ourselves here to preliminary remarks in this direction. (In this subsection only,
we use boldface w for the momentum operators, to distinguish them from the
number 7.)

We begin with the relations

70) = iF|0), (0|« = —i(0|F, (4.21a)
171 1 -
ol [P 25| 10 = 012510, (1.210)
+

where (4.21¢) follows from the vacuum properties (4.21a) and the identity (4.21b).
We intend to let the complex variable z approach the real axis z — q + i€, where
we will need the following facts (P is principal value)

1 P .
q7¢+i€:q7¢—m6(q—¢), (4.22a)
P P P ( P P )
q

g—aqg—b a—b —aiq—b
+ 725(q — a)d(q — b). (4.22b)
We also define the ground state density function p(q) and the function F(q)
pla) = (01(g — #)|0) >0, / dgplq) =1, (4.232)
F(g) = p(g)" {0 F(¢)3(g — ¢)|0), (4.23b)

where the latter is just F(¢) with ¢ replaced by g.
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Letting z approach the real axis, we find

Fla) = (0110} = [ &' = p(a'). (1.24a)
0F&Lo10 = 30 - T) (4.24b)

from the imaginary and real parts respectively of (4.21c). The result in (4.24a) gives
F(q) and the generalized creation and annihilation operators

A;%(/m@gzmm+m>,

: 5 (4.25)
At = — dg —— —i
([ usZ0-)
in terms of the ground state density p.
The result in (4.24a) can also be used to compute C(¢) in terms of p:
1
F(¢) =Re | dg———
(¢) = Re q¢iq7kmw, (.263)
C(9)[0) = i[m, F(¢)]|0),
1
i[m, F(¢)]|0) = —Re dqu(Q)|0><0|m|0>7 (4.26b)
- / ' P 2
C(6) =~ [ dadd plaold) o + 7). (4260)

Here (4.26b) follows from (4.26a) and (4.21b), while (4.26¢) follows from (4.26a) by
rearranging (4.26b) into a function of ¢ on the vacuum. A final form for C(¢)

1

C6) = ;

(F2(6) + n2%(6)) = 0 (4.27)
is obtained by symmetrizing the double integral in (4.26¢) and using (4.22b).
This completes the first stage of the analysis, in which we have expressed the
new operators F, A, AT and C(¢) in terms of the ground state density p.
In the second stage, we evaluate the ground state density p in terms of the
reduced potential V' of the system. We begin this stage with the identity
(0l ——=V"(9)/0)
z—¢

Il
|
=4
A
2
|
=
7 N\
&
=
~
A
2

1 1 1

CErE

1 1
_F|0), (4.28)

(z—¢)
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where we have used the fact that (0|A]|0) = 0 for any A. Letting z approach the
real axis, taking the imaginary part and using (z — ¢) =2 = —0,(2 — ¢) ! along with
previous formulas then allows us to compute p as a function of V'

V'(a) = ~m*p(a)(a) = pla) = =\/2(e~ V(@) (129)

where the constant € is determined by the normalization condition in (4.23a). The
ground state density p is the same function introduced in Ref. 18.

Although a complete discussion is beyond the scope of this paper, the basis-
independent analysis above can be extended to many matrices, beginning with the
extension of (4.21b),

1 1
B>2: i|my,
[ Zmy — Pm,y Zmy, — Pm,
= 1 1 1 1
=N Sk, 0)(0
; foms Zmy — Omy Zm; — Om; 10 ‘Zmi — Om; Zm, — Pm,
(4.30)

and the corresponding extension of (4.28).

4.4. “Ordinary” Cuntz algebras and completeness in
interacting theories

In Subsecs. 4.1-4.3, we have constructed generalized creation and annihilation
operators which satisfy generalized free algebras in interacting theories, but we
have not yet discussed completeness for these operators. Here we note first that
ordinary Cuntz algebras can, under certain technical assumptions, be constructed
in the interacting theories as well, and this will help us understand completeness in
the case of the generalized operators.

The form of the generalized free algebra in (4.10a) guarantees that C,,,, and Dmn
are nonnegative operators. The results of Subsec. 4.2 show that C,,,, and Emn are
in fact positive operators at least where the potential of the interacting theory is in
some (say perturbative) neighborhood of the oscillator potential. Moreover (4.27)
shows that C' is positive for almost all one-matrix models. The following discussion
is limited to the broad class of theories for which these operators are strictly positive

C(¢), D(¢)>0 (4.31)

although we do not yet have a complete characterization of these theories in terms
of the potential.
For this class of theories, we can construct the “ordinary” Cuntz operators

(4.32a)
(4.32b)
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which satisfy the symmetric free algebra
U@l = Gl = Spn (4.33a)
am|0) = @, |0) = (0]al, = (0]al, =0 (4.33b)

as a consequence of (4.7) and (4.10). Using (4.7d), (4.8a) and (4.32), other relations,
such as the mixed commutators [ay,, @], [al,,al], can also be computed in terms
of C, D and the Cuntz operators.

The states formed by the a'’s or the a!’s on the vacuum should be complete at
least in some neighborhood of the oscillator potential, and the expected complete-
ness relations for the Cuntz operators

al @ = @l dm =1—10)(0] (4.34)

follow with (4.33) by operating on the complete set of af or a' states.

The results (4.32)—(4.34) complete the construction of a symmetric pair of Cuntz
algebras in the interacting theories. Our construction is in agreement with the
complementary discussion of Ref. 20, which assumed the existence of the (untilde)
Cuntz algebra for potentials in a perturbative neighborhood of the oscillator.

Returning to the generalized creation and annihilation operators, we can now
show that the completeness of the a' or a' states is equivalent to the completeness
of the generalized A" or A states: The corresponding completeness relations for
the generalized creation and annihilation operators

AL (C Y anAn = AL (D™ anAn = 1 — [0)(0] (4.35)

follow immediately from (4.34) and (4.10a). These relations are also obtained by
studying the action of the left hand sides of (4.35) on the AT or At states, implying
the completeness of these sets of states as well. The argument can easily be run
backward, so that all four types (af,af, Af, AT) of completeness are equivalent.

For reference we collect here the final form of our generalized or interacting
symmetric Cuntz algebras

Ap Al = Crin(0),  AnAl = Dpn(9), (4.36a)

Drmn(¢) = Crm(9), (4.36b)

(A, Ay = [Al, ATl =0, (4.36¢)
(A, Al] = [An, Al ] = i[fn, Fy] = i, Fn], (4.36d)

Al (C™Y)nAn = AT (DY) nAn =1 —[0)(0], (4.36e)
A |0) = A,,]0) = (0| Al = (0| Al, =0, (4.36f)

AL10) = AL 10), (0] Anm = (0]An (4.36g)

which includes (4.35), the results of Subsec. 4.1 and assumes (4.31). For the special
case of the oscillators (see (4.18) and (4.19)), these generalized free algebras reduce
to the symmetric Cuntz algebra (3.10).
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The interacting symmetric Cuntz algebras (4.36) are a central result of this
paper. We turn now to two applications of these algebras.

4.5. New local conserved quantities at large N

Our first application is simple but quite remarkable. The interacting symmetric
Cuntz algebras (4.36) and their associated “ordinary” Cuntz algebras (4.32)—(4.34)
imply new local conserved quantities at large N:

jmn:j:()y m,nle, (4373,)

1

Tmn = amal, = (Cii)mpApAg (Ci%)

qn’

S[(O7H0),,, (F(6) +im) (Fy(6) — img) (C7H(8)),,,] . (4.370)

[(Fin() = imm) (C7H(8)),,, (Fu() + ima) ] (4.37¢)

Joy=0, Ji=J (4.37d)

for all bosonic theories with C', D > 0. Similarly conserved operators Jn, and
J are constructed by replacing C — D and each of the other operators by their
tilde form.

The conservation of Jp,, in (4.37) understates the information we have because
we also know that

which is properly interpreted as a set of B? local constraints at large N.
For the one-matrix model, the results of Subsec. 4.3,

F(¢) = dq% (@), C(¢) = %(F2(¢)+ﬂ'2p2(¢)), (4.39a)

p6) = 1y2(e- V(). [dapta) =1 (4.390)

give these new large N-conserved quantities in closed form, and it is possible in
principle to evaluate (4.37b) and (4.37c) for higher B to any desired order in the
coefficients v(™) of the potential [see Eq. (2.50)]. Explicit forms of these reduced
quantities can be pulled back (as in Subsec. 3.5) into hidden local (second order
in momenta) but nonpolynomial (in coordinates) unreduced densities (Jpmn)rs and
(J)rs which are conserved only at large N, and only in the large N Hilbert space
of (2.9).

These new large N-conserved quantities are another central result of this paper,
since they apparently realize an old dream of hidden local conserved quantities in
quantum field theory.
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4.6. General reduced Hamiltonian

The interacting symmetric Cuntz algebras (4.36) and their associated “ordinary”
Cuntz algebras (4.32)—(4.34) also allow us in principle to construct the general
reduced Hamiltonian for bosonic systems with C, D > 0.

Following Subsecs. 3.2 and 3.4, we consider a fitting procedure based on a family
of nonlocal reduced Hamiltonians,

H =H-FEy= Zaml al, h(a,a)am, - am, , (4.40a)
H'|0) = h(a,a’)|0), (4.40Db)
al, =i[H' al)] = ih(a,a")a], ,
(4.40c)
am = i[H', am) = —iamh(a,al),
Tm = —=(al(C?) —(C%) a,), (4.40d)

V2

where the arbitrary Hermitian operator h(a,a') is to be determined in terms of the
potential. According to the Cuntz algebra, a formal solution of (4.40c) is

h=h' =ial a, = —ial am, (4.41a)
H'|0) = h|0) =0 (4.41b)

and we can make contact with the theory in question by using (4.32) to reexpress
this system in terms of the interacting Cuntz operators. This gives in particular the
useful form of h:

4

h= z(ATC") (c—24)

dt
= T — T, [(C_ _5) (Fy +imy)

+(C Hm (dt zV’)} (4.42)

Using the data of Subsec. 4.3 it is straightforward to evaluate (4.42) and the reduced
Hamiltonian H' of the general one-matrix model in closed form. More generally, it
is possible in principle to evaluate the reduced Hamiltonian (4.40a) to any order in
the coefficients v(™) of the potential [see Eq. (2.50)]. Explicit forms of the general re-
duced Hamiltonian can be pulled back (see Subsec. 3.5) into new large N-conserved
unreduced densities H,, which also correspond at large N (by the density maps of
Sec. 2) to the same reduced H'.
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5. Bose, Fermi and SUSY Oscillators
5.1. Symmetric Bose/Fermi/Cuntz algebras

We turn now to study the reduced equal-time algebra of a set of B real bosonic
and F' complex fermionic oscillators. Drawing on the discussion of Subsec. 2.5 and
Sec. 3, our goal in this subsection is to find the Bose/Fermi generalization of the
symmetric Cuntz algebras (3.10) discussed above.

For the reduced oscillators we may assume that

am|0) = @ [0) =0,  af,|0) =af,|0), (5.1a)
$al0) =dal0) =0, $L]0) = L0}, (5.1b)
m=1---B, a=1---F, F:g:integer (5.1c)
and the equal-time algebra [see (2.47)] takes the form
[am, @}] = [@m, al] = 8mn|0)(0], (5.2a)
[Ya, DL], = [a, 0}, = 6.410)(0, (5.2b)
[am,an] = [a‘;rna d;fl} =0,
(5.2c)

[wd7&6]+ = WL@;]JF = 07
[am,al] = [Ya,¥L], = [am.ah,] — [da, 91]
= B—F—1+10)0]. (5.2d)

The bosonic and fermionic operators also commute with each other when only one
is tilded. Following Sec. 3, we see that the set of all untilded words is complete

{wll e aInl e wln e alnp |O>} — Complete (53)

as well as the set of all tilded words, and indeed that each word of one set can be
reexpressed as a word in the other set.

Studying the action of the annihilation operators on the complete sets of states
[see Eq. (3.7)] one finds the symmetric Bose/Fermi/Cuntz algebra

Amal, = dmdl, = Spn, Yt} = badly =6, 5, (5.4a)
aml, = vaal, = amil = gadl, =0, (5.4b)
al am + Wb = al am + Plds =1 —10)(0], (5.4c)
[am,@l] = [am, al,] = 6,mn|0)(0], (5.4d)
[Ya, DL], = [da, 0}, = 64410)(0, (5.4e)
[ams @] = [absah] = [va ], = [v5,01], =0, (5.4f)

=
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[al,, ¥a] = [al,, 9] = [al,,vs] = [al,,v}] =0, (5.4h)
am|0) =0,  al,|0)=al,[0),
i (5.4i)
Pal0) =0,  9L]0) =l|0),
m,n=1---B, & fB=1---F, (5.4j)

where B and F are integers. In particular, the relations (5.4a), (5.4b) come from
the analysis of the annihilation operators, while the completeness relations (5.4c)
are the result of using these three relations in (5.2d).

The symmetric Bose/Fermi/Cuntz algebra (5.4) is symmetric under interchange
of tilde and untilde operators. It may also be considered as a family of algebras
which interpolates from the symmetric Bose/Cuntz algebra (3.10) at F = 0 to a
symmetric Fermi/Cuntz algebra at B = 0. In the special case of Fadeev—Popov
ghosts, a subalgebra similar to the untilde part of (5.4a), (5.4b) was written down
in Ref. 20.

5.2. Cuntz superalgebras

A striking feature of the symmetric Bose/Fermi/Cuntz algebra (5.4) is that it con-
tains an important free subalgebra which shows a Bose—Fermi equivalence. To high-
light this fact, it is convenient to introduce the oscillator superfields

Ay = [ O™ At —
M = 1/10'4 ) M — wT )
— (an L (al, (5.5)

M=1---(B+F)
in terms of which the free subalgebra (5.4a)—(5.4c) and (5.4i) takes the Bose—Fermi
equivalent form

AnAYy = A Al = duw (5.6a)
Al Ay = AL Ay =1—10)(0], (5.6b)
Ap|0) = Ap|0) =0, Al 0) = AT, |0). (5.6¢)

This algebra is a subalgebra of a symmetric Cuntz algebra, but since it contains
both Bose and Fermi oscillators, we will refer to it as a symmetric Cuntz super-
algebra.

It is well known that the Cuntz algebras, being free algebras, dictate classical or
Boltzmann statistics for the states. The states of the symmetric Bose/Fermi/Cuntz
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algebra (5.4) are formed by the application of any number of A'’s (or Af’s) on the
vacuum

(Al - Al 10} = {A], - AL, 0)} = complete (5.7)

so the free superalgebra (5.6) dictates the same Boltzmann statistics for the large N
fermions and bosons. In particular, the Pauli Principle is lost for large N fermions.
The Bose-Fermi equivalence is also related to the fact that the identification ¢ = ¢,
7 = 7 (see Subsec. 2.6) is lost for B = 1 when F # 0, just as it is when F = 0
and B > 2.

Finally, we emphasize that the Bose—Fermi equivalence seen in the free subalge-
bra (5.4a)—(5.4c), (5.4i) is not sustained in the full symmetric Bose/Fermi/Cuntz
algebra (5.4), where the mixed relations (5.4d)—(5.4f) distinguish bosons from
fermions. See Subsec. 5.5 for the superfield form of the full algebra.

5.3. One SUSY oscillator

As a simple example, we consider the large N formulation and solution of the
(w = 1) supersymmetric one-matrix oscillator, with supercharges Q. and Q.. The
unreduced form of this system is

Q.=Tr(yrt), Q.=Tr('n"), =f5=(r+i¢),, (5.8a)

[Drss Toal = 10sp0rq s [Wrss Uhgl+ = spdrq, (5.8b)
Q.*=Q.2=0, [Q.,Q.)4=2H., (5.8¢)

H. = %Tr(ﬂQ +¢% + ¥, y]), (5.8d)
Q.10.) =Q.[0.) =H.|0.) =0 (5.8¢)

together with implied relations such as

Q.=Q.=H.=[Q.,H.]=[Q.,H.]=0 (5.9)

and the algebra of the supercharges with the fields.
For the reduced formulation we will temporarily employ a mixed notation, in-
cluding sometimes the component fields and sometimes the superfield notation (5.5)

with M = 1,2:
i
_[a To_ (@
av= (). A=)

) . (5.10a)
~ - a it a
a=(5) A= (5)
7 t 1 .
a= T, a'= *Eﬂur, Ty =7+, (5.10Db)
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where the superfields satisfy the Cuntz superalgebra (5.6) with B + F = 2. The
remaining components of the reduced equal-time algebra are

0. = [aal] = [, &', = o' = 0)(0] (5.11a)
[a,a] = [a',a] = [, ]+ = [T, ¢1]4 =0, (5.11b)
[a, 9] = [a,91] = [a,4] = [@, 1] =0, (5.11c)
[al,¢] = [a,91] = [a", 9] = [@', 9] = 0 (5.11d)

which can also be written in terms of the superfields (see Subsec. 5.5).
The reduced equations of motion, involving the reduced Hamiltonian H, are

Ay = i[H, Ay = —iAy, A, =i[H AL =diAl (5.12a)
Ay = ilH, Ay) = —idy, A, =i[H, AL] = iAl, (5.12b)

and the ground state energy of the system is evaluated with (5.6¢) as

Eo = (0| H]0)
= 2 olfat s+ w01 10)
- N7<ona,aw — [ d7]410) = 0. (513

The properties of the reduced supercharges @ and Q also follow from the maps
of Sec. 2:

Q*=Q*=0, [Q, Q]+ =2H, (5.14a)
Q=Q=H=[QH=[QH =0, (5.14b)
Ql0) = Q|0) = H|0) =0, (5.140)
(0]Q10) = (0]iv2¢at|0) =0,
(01Q10) = (0] — ivEy'al0) =0, (5140
@,a] = —ivV2y,  [Q,a'] = —iv2yT, (5.15a)
@91 =iv2d,  [Q,¢]4 = —iV2a, (5.15b)
[Q,a'] = [Q,a] = [Q,¢]+ = [Q,¢"]+ =0, (5.15¢)
@ .a = —iv29,  [Q,a'] = —iv2yT, (5.16a)
Q.91 =iv2al, [Q,9]+ = —iv2a, (5.16b)
Q,a'] = [Q,a] = (@, ¥]+ = [Q,¥']+ =0. (5.16¢)

Owing to the opacity phenomenon for trace class operators (see Subsec. 2.3), we
do not yet know the composite form of the reduced supercharges and the reduced
Hamiltonian.
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Drawing on experience in earlier sections, we have solved the relations (5.12) and
(5.14)—(5.16) to obtain the explicit form of the reduced supercharges and Hamilto-
nian. The results can be expressed entirely in terms of the superfields

Q=1 (Alrs)as, -+ (AT7s)n, (ATV2r  A) Ay, -+ Ay (5.17a)
n=0
=iy (Alm), - (A73),, (ATV2r A) Ap, - Ay (5.17D)
n=0
Q=—i> (A'rs)as, - (Alrs),, (ATV27_A)Au, -+ A, (5.17¢)
n=0
= —1 Z(ATT3)M1 T (ATTg)M (AT\&T_A)AM” T AMl , (517d)
n=0
H=Y Al - Al (ATA)Ay, - Ay, (5.17¢)
n=0
=S Al Al (ATA)Ay, - Ay, (5.17f)
n=0

0 1 0 0 1 0
T+ = (O O) y T— = (1 O) ) T3 = (O _1> ) (517g)

where the Pauli matrices 7 operate in the reduced two-dimensional superspace
(TA)M = TMNAN-
The reduced supercharges and Hamiltonian can be understood as nonlocally

dressed forms of their *

‘zeroth order” factors

Q=iAN2r A+ =iV2alp+ -, (5.18a)
Q= —iAV2r At - = —iv2pltat -, (5.18b)
H=ATA+ - =adla+ylp+--- (5.18c¢)

which closely resemble the unreduced supercharge and energy densities in (5.8a)
and (5.8d).

Indeed, following the discussion of large N field identification in Subsec. 3.5, we
may construct the new nonlocal unreduced densities Q,.s, Qs and H,,

Qrszérs:Hrs:Oa T,SZ]_H-N, (5193,)
Qrs]0.) = Qrs|0.) = H,4[0.) =0 (5.19b)
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which also correspond at large N to the same reduced supercharges and Hamilto-
nian.! These densities have exactly the forms given in (5.17a), (5.17c) and (5.17e),
now with all operators interpreted as matrix-valued operators

Lﬂ'* ,iﬂ.+
Au)es= | V27| (Al = x/f " (5.20)
s "

and all products as matrix products. The operators 7%, are defined in (5.8a). As an

example, the first two terms of the new supercharge density are
Qrs =1 {(AM73)n, - (AT7s) s, (ATV27 A)Apg, - Argy }re (5:21a)
n=0

= (AL ) V2(m ) N (AN )i

+i((Alrs)n),, (ATV27L A), (An)us + -+ - (5.21b)

As in Sec. 3.5 we find that the new conserved densities are dressed nonlocal forms
Qrs =mlbes T+, Qra =Wl o0, (5.222)

Hey = gty + lths ++ (5.22b)
Qrr=Q.+, Qu=Q.4+-, H,=H +- - (5.22¢)

of the original unreduced supercharge and energy densities.

5.4. Bosonic construction of supersymmetry

We note here that the Bose-Fermi equivalence of the free superalgebra (5.6) allows
a purely bosonic construction of supersymmetry at large N.

Suppose that the unreduced operator ¢,s — b.s above was a complex boson.
This does not change the free algebra (5.6) of the reduced operators

A= (Z) , f = (Z:) (5.23)

so we retain that part of our algebraic construction’

Q=1 (Alra)n, - (AT7s)ns, (ATV27  A) Ay, -+ Ay (5.24a)
n=0
Q=—iY (Alra)ay, - (Alra)ar, (ATV2r_A) Ay, -+ Apry . (5.24D)
n=0

Tt is again an oscillator artifact that the relations (5.19) are true at finite N.
JOne can alternately start with the tilde forms of Q, Q in (5.17b) and (5.17d), obtaining the SUSY
algebra (5.25) and the tilde relations (5.12b), (5.16) and (5.17f).
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H= i Al Al (ATA) Ay, - Ay (5.24c)
=0

Ay = i[H, Ay = —iApy, Al =i[H, Al =iAl, (5.24d)

Q*=@Q*=0, [Q,Ql+=2H, (5.25a)

Q=Q=H=[QH=[QH =0, (5.25b)

Q[0) = Q|0) = H|0) =0, (5.25¢)

[Q,a] = —iv2b,  [Q,al] = —iv2bT, (5.26a)

Qb1 =iv2at, Q0] = —iv2a, (5.26b)

(@ a'] = [Q,a] = [@,b]+ = [@,b7]4 =0 (5.26¢)

which follows from the free algebra alone.

The nonlocal forms (5.24a)—(5.24c) provide a purely bosonic construction of
supersymmetry at large N, but the construction is apparently not equivalent to
two unreduced bosonic oscillators, or indeed to any local unreduced theory: In
the first place, the anticommutators persist for b’s in (5.26). Moreover, the mixed
relations in (5.11a), (5.11b) for b now involve commutators, which loses the tilde
forms of Q, @, H in (5.17b), (5.17d) and (5.17f) and causes for example a nonlocal
equation of motion for b.

5.5. Higher supersymmetry

In this section, we generalize the construction of Subsec. 5.3 to higher supersym-
metry. We will work directly in reduced space, starting with nothing but the Cuntz
superalgebra
Ay AL = bun, An|0) = (0]Af, =0, (5.27a)
Al Ay =1-10)0], M, N=1---(B+F), (5.27b)
where B and F' are presently undetermined. Using only (5.27a), we consider the

operators

(o9}

Qi =Y (AT, -+ (Ay)ar, (AT A) An,, - Ay (5.28)

n=0
which are functions of arbitrary matrices v and I';. It is straightforward to see that
these operators satisfy

Qil0) =0, (5.29a)
QiAL, — (AT mQi = (AT,

ApmQi — Qi(YA)m = (TiA)nr .

(5.29b)
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Now choose the matrices to satisfy
=1, [v,[i]+ =0, Vi (5.30)

so that the relations

QiAlL, = (AT + (AT M Qs

QiAyv = —(YVLiA)mr + (VA) M Qi
follow from (5.29b). These relations can be used in Q;Q; to push Q; through all
the A’s and A"’s in Q;, with the result

(5.31)

[Qi, Qs)+ =D Aby, -+~ Aby (ATT3 Til 4 A)Ang, -+ Ay - (5.32)
n=0
To close the algebra (5.32), we now choose the matrices I'; to be a Dirac represen-
tation of a Clifford algebra in 2d Euclidean dimensions
T4, L] = 2045, ) =Ty, i=1---2d, (5.33)

where v = “y5” = [[,T; and size (I';,7) = 2%.
We have therefore constructed a reduced system with n = 2d supersymmetries

(Qi, Qs+ = 20i;H, 4, j=1---2d, (5.34a)
n=0

Ay = i[H, Ay = —iAy, Al =i[H, Al =iAl,, (5.34c)

Qi|0) = H|0)=0 (5.34d)

which includes the construction of Subsec. 5.3 as the special case with d = 1 and
size (T',y) = 2.
In a Weyl representation (with blocks of size 2¢71)

_(1 0 (0 oy
SRS

we may identify B = F = 297! bosons and fermions in the superfields as

T
AM:(%?7 Aa=(%ﬁ7 m, &=1.2070 M=1..2". (530

Vs 7/1,2
This assignment follows because the relations (5.31) read
Qiral) = vh(WNam, Qi 01l = af,(¥)ma (5.37a)
(@i am] = ~()mava,  [Qivals = (W) amam (5.37b)
under the identification (5.36). Similarly, one has for the reduced supercharges and
Hamiltonian
Qi = AT A+ = af, (V) mava + V(7] amam + -+, (5.38a)

H=AA+ - =al am+ 0+ (5.38b)
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and these operators can be pulled back straightforwardly into unreduced super-
charge and energy densities (Q;)rs, Hrs

(Qi)rs = Hrs - O, (Qz)rs‘o> = Hrs|0-> =0 (539)

which are nonlocally dressed forms of the original densities of the theory (see Sub-
secs. 3.5 and 5.3).
In this case, we have also the reduced generators of spin (2d)

> i
Jij =Y Al - Al ( - ZAT [ri,rj]A) A, - Apg, (5.40a)
n=0

[H,Ji;] =0,  Ji|0)=0. (5.40D)

Using (5.40a), we have checked that the reduced fields a,, and ¢4 both transform
as Weyl spinors of spin (2d), while the reduced superfield A, transforms as a Dirac
spinor. The reduced supercharges themselves transform in the vector representation
of spin (2d).

In the discussion above, we used only the free superalgebra (5.27a) of the untilde
superfields to study only the untilde forms of the reduced operators and fields.k
With the inclusion of the full B = F = 2971 Bose/Fermi/Cuntz algebra (5.4), one
finds also that all the equations of this section hold when every field is also tilded
(including the tilde form of the equation of motion and the tilde forms of @Q; and
H). The form of the corresponding unreduced generators Q.; and H., as a function
of the unreduced SUSY oscillators, is left as an exercise for the reader.

In this connection we note that when B = F = 291 the full symmetric
Bose/Fermi/Cuntz algebra (5.4) can be written entirely in terms of the reduced
superfields as

Ay Al = Ay AN =0yn, M, N=1...2¢ (5.41a)
Al Ay = Al Ay =1—10)(0], (5.41b)
Apr]0) = A0y =0, Al |0) = AT, |0), (5.41c¢)
A AN = AL, Ry e v Ane 4 0w |0)(0] (5.41d)
AyvAn = Rynw N Ani Ay
(5.41e)
Al AL = A AN Ry v
Rynvn = (V) MM ONN' + (V=) MM YN N/
=0pm (Y+)nN + (V) (V=) NN (5.41f)
Ta = S(1£7). (5.41¢)

kUp to this point, the construction above can also be interpreted, as in Subsec. 5.4, as a bosonic
construction of n = 2d reduced supersymmetries.
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Here (5.41a)—(5.41c) is the symmetric free superalgebra (5.6), which collects (5.4a)—
(5.4c) and (5.4i), and the matrix R in (5.41d)—(5.41f) correctly distinguishes be-
tween fermions and bosons in the mixed relations (5.4d)—(5.4h). The matrices vy
in (5.41g) are the natural projection operators onto B = F = 2971 bosons and
fermions, but the full algebra (5.4) for unrestricted B and F' can always be put in
superfield form by choosing the R matrix as

Ryn,mn = (Po) v (Po) v + (Po) v (Pr) N
+ (Pr)mm (Po) v — (Pr)mmr (Pr) N (5.42)

where P, and Py are projectors onto the bosons and fermions.
Finally, we remark on a more general algebraic identity, with arbitrary matrix
~ and operator g,

oo

Q=Qa)=> (A (AT, ¢ Anr, - Any . (5.43a)

n=0
q=q(A, AT, Q(1:9)[0) = ¢|0), (5.43b)
(AMwQ = (@ -9 Al,,  Q(yA)w = Au(Q —q), (5.43c)
Q1Q2 = Q(172; Q12 + 1 Q2 — q1q2) , (5.43d)

where Q1 = Q(71;¢1), @2 = Q(72;¢2). The relations above follow from the free
superalgebra (5.27a), and this result includes the identity used in the construction
above.

6. Matrix Theory

In this section we give the large N formulation of the n = 16 supersymmetric
gauge quantum mechanics,*® now called Matrix theory,*! in the temporal gauge
(see Sec. 2). We will take the matrix fields of the theory to be traceless, so that
we may follow the lore***! in assuming that the ground state is unique and hence
supersymmetric and rotationally invariant. Since it costs no further effort, we will

40,45,46 f matrix models with

include in our treatment the entire minimal sequence
16, 8, 4 and 2 supersymmetries (which is obtained by dimensional reduction of pure
super Yang—Mills theories in 10, 6, 4 and 3 space—time dimensions.)

The Hermitian field form of Matrix theory was given for any gauge symmetry
in Ref. 40. Our notation for the traceless field formulation is changed only slightly

from that of Sec. 2,

(Ta)rs(Ta)uv = Lrsuv Tr(TaTb) = 5ab ) Tr(Ta) = Oa (61&)
Prs = pa(Ta)T57 TT(P) = 07 p = ¢7 m, Oor A7 (61b>

[ 77*ns> 71'31)} - Z.fsnmii:)rsmv ) [(Aa)rm (Aﬁ)uv]+ = 5aﬁpr5,uv ) (6'1C)
r,s=1---N, a, b=1---N?—-1, (6.1d)

m=1---B, a=1---f, B=F+1, F:%, f=16,8,4,2,
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where the projector P is defined in (2.10e). The numbers of real fermions f in (6.1e)
are also the numbers of real supersymmetries in the minimal sequence.
The matrix field form of the theory is defined by

Q.0 = Tr((T™A)0m™ + (5™ A)al6™, 6"]) , (6.2a)
Q-0 Q5]+ = 26a5H. + 29T Tr(6™G), (6.2b)

2
H.= %Tr (wmwm - %W", ¢"[o™, ¢"] + g[Aa,Aﬁ]JZ?gcbm) , (620)

1
G'r‘s = _i[qﬁmyﬂ'm}rs - (AocAa)rs - (N - N)érsy (62d)
Jm ="Tr (W[m¢n] - %AEm"A) ) (6.2¢)
IR T e L (6.26)

where g is the coupling constant and the matrices I'™ are real, symmetric and
traceless. At large N, the SU(N) gauge generators in (6.2d) are in agreement with
the SU(N) generators (2.6) at B = F' + 1. The generators of spin (B), with B =
9,5,3 and 2, are given in (6.2e). Derived relations include

f
Qo =ig Te(AG). H.= 33" @ (6.32)
a=1
T H] =0,  [J"Q.0) = (5™Q.)a (6.3b)
[Jmn, Jpa) = g(galm grle — gplm gria) (6.3c)

and the algebra of Q.,, H. and J™" with the fields.
As noted above, we assume here that the gauge-invariant ground state

Grs|0-> :0 (64)

of the theory is unique.! This means that the ground state is also supersymmetric
and rotationally invariant

Q..|0.) =H.|0.) =J™0.) =0 (6.5)
and that the large N completeness relation has the same form

1. = 10.)(.0] + Z |rs, A)(rs, A| (6.6)
rs,A

which we have been studying throughout this paper.

ITo study the possibility of degenerate vacua in large N theories with fermions, see the discussion
around Eq. (2.11).
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For the reduced large IV theory, we maintain ’t Hooft scaling by choosing

= 6.7
9=75 (6.7)
where the rescaled coupling A is independent of V. The definitions of reduced matrix
elements and operators in Sec. 2 are unchanged, except for the vacuum expectation
values [see (2.13a)], which now read

(0¢m [0) = (0]mm |0) = (0]Aa[0) =0 (6.8)

for the reduced fields, because the unreduced fields are traceless. Then, except for
a few corrections which are negligible at large IV, we find that no other changes are
necessary, and we may take over all the reduced results derived in previous sections.

The equal-time free algebra of reduced Matrix theory is a copy of (2.35)
and (2.15b)

[bims Tn] = [P 0] = i6mn]0)(O] , (6.9)

[Gms Pn] = [T, 7n] =0, (6.9b)

[Aa, Aglt = 8ag[0)(0], (6.9¢)
(A, ] = [Aa, 6] = [Aas Fm] = [Aay Tm] =0, (6.9d)

(s Tm] — iMaAa = [, Tm] — iAaAe = 7]0)(0], (6.9¢)
(Gm = &m)10) = (Fm — mm)|0) = (Ao — Aa)[0) =0, (6.9f)
(6 — dm)[0) = (i — ) |0) = (Re — Aa)|0) = 0 (6.92)

with B = F 4 1. Recall that (6.9e) summarizes the action of the reduced gauge
generators G, G on the reduced states (see Eq. (2.27)).
The reduced equations of motion are

Gm = i[H, Pm] = T , (6.10a)
T = i[H, Tm] = A [fn, [Pm dn]] — AT 05Ag, (6.10Db)
Ao = i[H,AQ] = i hm, Ag] (6.10c)
m = i[H, ] = 7, (6.10d)
Tm = i[H, T = A [n, [Bm, $nl] + Ao A5, (6.10e)
Ag = i[H, Aa] = =TT [G1n, Ag], (6.10f)

where H is the reduced Hamiltonian. Notice the sign changes in the tilde equations
of motion. These follow from the unreduced equations of motion, and one can check
with (6.9a)—(6.9f) that these signs are consistent with (6.9g).
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Supersymmetry and rotational invariance tell us that the corresponding reduced
operators annihilate the ground state

Q.|0) = H|0) = J1un|0) =0 (6.11)
and therefore that
0= (0]Qal0)
= (0|(T"A)amm + AME""A) o [dm, dn]|0), (6.12a)
0= (0|H|0)
)\2
= <O|7Tm71'm - 7[¢ma ¢n] [Qbma ¢n] + A[Aaa Aﬁ}JrFZLg(ZSm ‘0> 5 (612b)
0= (0] |0) = (O] pm oy — %AE’”"A\(» , (6.12¢)

where the explicit forms of the unreduced operators have been used to evaluate the
last form in each relation.
For the reduced angular momenta, the maps of Sec. 2 tell us also that

Jn = i[H, Jyn] = 0, (6.13a)
[T, bp) = —i0p(mbn » b=¢, m ¢, or 7, (6.13b)
[Jmn, fo] = (™" flas  f=A, Aor @, (6.13¢)

[Trmns Ipa) = (8qmJngp — OpimJnlq) (6.13d)

so that the rotational properties of the reduced fields are the same as in the unre-
duced theory.
For the reduced supercharges, we find

[QCW Qﬁ}-f— = 2(6045H + Argng((;m - ¢m)) ) (614&)
f

. - 1
Qo =i[H,Qs) = MAq —Ay), H= ?;QZ, (6.14b)
[Qas ¢m] = —i(T"™A)a, (6.15a)
[Qom Wm} = 27)\[¢n7 (EmnA)a} ) (615b)
[Qas Mgl = Talpmm + AXES [Pm, Pnl (6.15¢)
[Qou (gm} = _i(rmﬂ)a ; (6.16&)
[Qou ﬁm} = _21)\[Q;n7 (Zmn[\)a] ; (616b)
(Quv Agls = Tl — NS (B ). (6.16¢)

Note in particular the unexpected form of the extra term on the right side of the
reduced supersymmetry algebra (6.14a) and the term on the right side of Q, in
(6.14b), both of which are proportional to the difference of a reduced operator and
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its tilde. These terms are the reduced analogues of the gauge terms in (6.2b) and
(6.3a) respectively. Using (6.9f), we see that these terms are consistent with

Qal0) = Qal0) =0 (6.17)

as they should be. Although we have derived this system from the unreduced rela-
tions and the maps of Sec. 2, we have checked for example that the reduced equa-
tions of motion (6.10) also follow from the form of the reduced Hamiltonian in
(6.14b) and the algebra (6.15) and (6.16) of the reduced supercharges with the
reduced fields.

A next step toward the solution of Matrix theory would be to find explicit
nonlocal forms of the reduced operators @,, H and J,,,, as we have done for
simpler systems in previous sections. Towards this, it will be helpful to look for
interacting bosonic Cuntz operators, possibly of the form

A |0) =0,

1 .
A = E(Fm(qﬁ, A) + i)

following the line of our construction for bosonic theories in Sec. 4 and App. E. Ow-

(6.18)

ing to the complexity of the Matrix theory ground state,*”-*® however, we have not
yet been able to prove the existence of such operators in this case. We note, how-
ever, that if such bosonic operators exist, then one also obtains a set of generalized
fermionic creation and annihilation operators

Amoc = Z.[QouAm] 5 Ama‘0> =0 (619)

whose local composite form can be evaluated with (6.15). These two types of opera-
tors correspond to A ~ a and A; ~ 4 in the simpler supersymmetric models
above.

Further study of these generalized free algebras is particularly important for
Matrix theory, where the associated new large N-conserved quantities (local and
nonlocal) may be related to the question of hidden 11-dimensional symmetry.*!
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Note Added

After submission of this manuscript, Ref. 49 was called to our attention: In an appli-
cation to “infinite statistics,” this reference contains another independent discovery
of the Cuntz algebra in physics and gives our Eq. (3.19a).

Appendix A. Time Reversal and the Tilde Operators

For time-reversal invariant theories, the reduced tilde fields of the text can be related
to the time-reversed form of the reduced untilde fields. This is simplest to see for
bosonic theories, as follows.

In the coordinate representation, where ¢7*(t = 0) is real, the usual antiunitary
time-reversal operator © gives

(Oaley! (1) [008) = (Bl¢' (—1)| ) , (A.la)
(Oalmg' ()|08) = — (8|7 (—1)|e) (A.1b)

for general time-independent states «, ( in the unreduced theory. Because the
Hamiltonian and the gauge generators obey

OH.=H.0, 0G,s = —G4,0 (A.2)
we can choose a basis of the unreduced singlet and adjoint states such that
©10.) =0.), O|rs, A) = |sr, A). (A.3)

Then the definitions (2.13) give the relations between the tilde and untilde reduced
fields:

(@), = Gn(-1),s (@), = —(En(-0),,. (A1)

where 1 = (0, A) and v = (0, B) label the reduced matrix elements of the reduced
fields [see, for example, (2.10), (2.12) and (2.54)].

Appendix B. More on Many-Time Wightman Functions

For globally invariant theories, the set of all invariant Wightman functions is the
set of averages of all fully-contracted products, each contraction being a summation
of a left matrix index with a right matrix index. We find that the equal-time traces

Corme (25 2L o) = N0l () pu(0)10), 9= mor A (8.1

are the most general invariant equal-time Wightman functions, but the many-time
traces

<.0|Tr(p;@ - p’j_"))w NOlp1(t2) - pu(ta)0) (B.2)

are not the most general invariant Wightman functions.
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In particular, there are also a large number of invariant “twisted traces,” such as

(-01prs(t1)per (t2)pst(£3)10.) = N3 (0| p(t1)(t2)p(t3)|0) (B.3)

which can be expressed in terms of our reduced operators p and g (subscripts
are suppressed here for simplicity). Moreover, there are an even larger number of
invariant twisted traces, such as

(-0 prs(t1)pru(ta) pst (t3) pur(ta)|0.) (B.4)

which cannot be expressed in terms of our reduced operators.

A rule for deciding whether any such invariant product will have its average
expressible in terms of our reduced operators is as follows. Draw a set of index lines
joining each pair of contracted indices in the ordered invariant operator product.
Then draw a vertical line between each neighboring pair of operators in the product
and count how many index lines each vertical line will cut. This operation represents
inserting a complete set of intermediate states in the channel defined by each vertical
line. If no more than two index lines are cut in a given channel, then this channel
is saturated by singlet and adjoint states, and the large N completeness relation
(2.9) may be inserted in this channel. If no more than two index lines are cut in
any channel of the twisted trace, then the corresponding average can be expressed
in terms of our reduced operators. However, if more than two index lines are cut
in any channel, then higher representations are necessary to saturate that channel,
and the average cannot be written in terms of our reduced operators.

Appendix C. More on Trace Class Operators

In this appendix we prove a theorem about any bosonic (including even fermion
number) trace class operator 7. and its corresponding reduced operator T'. In par-
ticular, we will show that, to leading order at large N in the large IV Hilbert space
(2.9), both T. and T are proportional to the unit operator in their respective spaces.

We begin in the unreduced theory, where the large N completeness statement
(2.9) tells us that

T.[0.) = [0.)(.0|T.]0.) x (L+ O(N1)). (C.1)

We want to extend this by examining the action of 7. on adjoint states. For this,
we assume that all the operators and states of interest can be built from products
of canonical variables. For example,

T. — Tr(t(w)) , tg:l:) e (Xilxi2 . 'Xik)’r‘s s (C.2a)

) m m A
XLZ(%) 7 (%) o (\/—%) ,  word w =1dyiz ik, (C.2b)

where ¢ is O(1) and T is O(N). A basis for the adjoint states is
{Irs,u) = 1{2]0.)}, (C.3)
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where the basis vectors are labeled by the set of all words u. Finally, the energy
eigenstates of the text may be expressed as an expansion in this basis

|rs, A) = ZK )|rs, w) (C4)

Now consider
T.|rs,u) = tMT.10.) +[T.,t¥]]0.)

= |rs,u)(.0|T.10.)(1 + O(N~")) + Leftover, (C.5)

where the “Leftover” terms come from the commutator. The leading term in (C.5)
is O(NV), and we will show that the Leftovers are O(N~1), so that

T.|rs,u) = |rs,u)(.0|T.]0.) x (1+O(N~')+O(N"?)). (C.6)

To see this, we need the canonical commutation relations

) . 1
[X;np X%s]:F = N Cij 6ps 6q7‘ )

dap if 4, j denote Aq, Ag, (C.1)
cij = { £i0mn if 4, j denote ¢™, 7",
0 otherwise.

This allows us to check that
[T.169] = 3 2 ~ o), (©8)

where the words v are made up from various parts of the words w and wu.
Collecting (C.1) and (C.6), we see that the leading term of T. is proportional
to the unreduced unit operator 1.

T.=1.(.0{T.]0.) x (L+ O(N~") + O(N™?)) . (C.9)
Similarly, we find for the reduced operator
T =1(0|T|0)(1+ O(N~") + O(N~?)), (C.10)

where 1 is the reduced unit operator. In the case when 7. contains an odd number
of fermions, a generalization of this result can be obtained involving the phases
(—1)F. We emphasize that the result (C.9) and (C.10) is independent of the scale
of T. and T, since a factor like C'(N) in (2.25a) can be included if desired on both
sides of the result.

As an example, consider the Hamiltonian H., for which

H.=Fo)l.+H', Ey = O(N?), H' = O(N?) (C.11)
tells us that there are no O(N 1) corrections to (C.1) in this case. We then see that

H.|rs,A) = Ealrs, A) = Eg|rs,A) x (L+ O(N~?)) (C.12)
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is consistent with
wao = Ea — Ey = O(NY). (C.13)
For the reduced Hamiltonian H, the result above implies
H=EFE)l+H, H' =O(N°). (C.14)

Many explicit examples of this are worked out in the text. The commutator equa-
tions of motion involve only the operator H'. In cases where the leading term is zero,
such as the Hamiltonian of SUSY systems or the angular momentum operators, the
theorem (C.10) tells us nothing useful.

These results imply that pairs of trace class operators commute to leading order
at large N (see also (2.34)). This is easy to see in examples, such as

[Tr(re), Tr(¢%)] = —2i Tr(¢?). (C.15)

Here each trace is O(N?), so the commutator is naively of O(N*). But the leading
terms contribute zero in the commutator and the result is O(N?).

Appendix D. More on the Tilde of a General Density

An algorithm for the computation of the tilde of a general reduced density was given
in Subsec. 2.5. Here we provide an alternate derivation which gives a recursive form
of the result. Let X,.; be any operator that transforms in the adjoint

[Grs, qu] = 0rqg Xps — Osp Xrq - (D.1)

Then, using the definitions of Sec. 2, we get the reduced operators X and X.
For any two such operators X and Y, we get another adjoint operator U by
composing X and Y as a regular matrix product

Urs == Xrt)/ts (DZ)

and we quickly find that the reduced operators satisfy U = XY. The form of the
reduced matrix U, however, has no simple expression in general.
We can further define an irregular product

Vis = X5 Yy (D3)

which also transforms in the adjoint. The results for the reduced operators in this
case are reversed: V = XVY; but there is no simple form for V in the general case.

One important special case is when all the matrix elements of X,, and Y, com-
mute (or anticommute) with one another. Then the regular and irregular composites

—_—~—

are equivalent and we have (XY) = +V X.

A broader case is the general density, defined in the text as any composite
operator built from repeated regular matrix products of the canonical variables.
With the result of App. C we can now give an alternate derivation of the general
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algorithm given in the text for expressing U(®) where U™) = y; xi, - - X3, . Using
the word notation, with the decomposition w = ui,,, we have that

Ul = UN = XU + [0 xi] ., (Dda)
(pg, A|UW |tr, B) = Py 1 (A|JU®)|B), (D.4b)

where (D.4b) is taken from the discussion of the text. From the first term on the

right in (D.4a) we get simply X;, U®. To evaluate the commutator we use (C.7)
repeatedly for each y factor in U and find a series of terms

1
Ciri U — (U@ , U = Tigy, D5
kin s N
k

where k£ counts tllgletters in the word u. The matrix element of Ur(f) gives the
reduced matrix U(*) while the trace factor gives (0|U®)|0), using the result of
App. C. Thus we have the following recursion relation for the tilde of a regular
operator product:

U@ = 45, U + 37 (£)¢i,0, UDO[UD[0),  w = iy, = wiryin. (D.6)
k

This result can be iterated to decompose any U into simple ¥ factors. The +
signs are determined by counting the number of times a fermion in y;, is moved
passed other fermions within U. This result is equivalent to the algorithm given in
Subsec. 2.5 for the tilde of a general density.

Appendix E. More on the Bosonic Ground State

In this appendix we supplement the discussion of Sec. 4, showing that the matrix
F,s($) can be considered a density at large N. At the same time we will provide
a closely related discussion of the quantities Cy,,, = A, Al which emphasizes their
unreduced form. Our starting point is the unreduced large N bosonic ground state
wave function

($]0.) = ho(¢) = e N'5@ (E.1)

whose “action” S(¢) is a general invariant function which is O(N?) in the Hilbert
space of (2.9). This is the form which results from 't Hooft-scaled potentials, as in
(2.50). In the following discussion we will work up to the general case by considering
a sequence of simpler special cases.

We begin with the special case of a single matrix ¢ and the special action

) ) E2)

I
|~
=

| —

7 N
B

S(¢) = Z 5nCn (), Cn () N
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where s,, are numbers. The trace class quantities ¢,, are O(N°) in the Hilbert space
of (2.9) and (p = 1. In this case we find directly that F, is a density

n—1
1 ¢
TrsWo = 1Frst, , F.s=N2 nsy || ——= E.3
vo= il Sol() ] @
and this translates immediately into the reduced form

F=Y nspy(¢)"". (E.4)

Consider next the operator C, defined by
Crs = [Arta (AT)ts] - i[ﬂ'rta Fts} . (E5)

Because A annihilates the ground state, we can show, using a ¢ basis, that the
At A term in (E.5) contributes to matrix elements at O(N~2) compared to the AAT
term, and so can be neglected

Crs = i[mpe, Frs] = Ap(AN)gs x (1+O(N72)). (E.6)

This is the basic step, in the unreduced formulation, which leads to Cuntz-like
algebras in the reduced formulation. The following is a sketch of the proof, in which
the adjoint basis |su,n) has a norm of O(N?):

Art|3u7n> = ArtNan(¢)Zu‘O>
1 ion m n m—
= ﬁN 2 ;(¢)st( Ho.) (E.7)

and we use this formula twice to calculate the appropriate matrix element
Tl
= SNTTET (0l T TH(@)10.) = Pypyu x O(NT?). (E.8)

m,m/’

(pg,n

Using (E.6) and (E.3), we now get C in terms of the action parameters as

Crs = ilmrt, Fis] = N 2221 nsy g (m () [(\%)n_m_T (E.9)

This exact expression involves a combination of trace class operators and adjoint
operators. To leading order at large IV, however, we can use the theorem of App. C
to replace the trace class operators by their vev’s, showing that C' is also a density
at large N. Consequently, we obtain the expression

n—2
C=> nsy Yy ¢" " 20|¢™|0) (E.10)
n=1 m=0

for the reduced quantity at large N.
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Next, we generalize the action S(¢) to include any function of the variables
¢n(®). The evaluation of F' proceeds as before

Fro= N33 08,(6) [(i)] su@) = 29 @)

VN n

so that F;.; now also involves a combination of trace class and adjoint operators. To
leading order at large N, we may again replace the trace class operators by their
vev’s,

n=1

F= N} Y n<.0|sn<¢>|o.>((\;iﬁ)"l)m (B.12)

n=1

so that Fj.s is a density at large N. The reduced operator takes the form
F = Z (018, (¢)]0) ()™~ (E.13)

and we see that the former constant s, is simply replaced by another constant
(0] aS(¢) |0) in the formula for F' or F.,. In this case, the computation of C,.s involves
a new type of term:

Crs = i[ﬂ'rta Fts]

:N;nb‘n(@ "2—22 (@ ﬂ(%) 2]7»5

m=0
+N! Z ansnm [(\%)mm 2] (E.14a)
Snm(¢) = 86;58(3 (E.14b)

but the new (second) term is two powers of N smaller than the first term and can
be neglected. The reduced matrix for C, as with F', appears exactly as before, with
the same reinterpretation of the numbers s,,.

We may redefine the constants in F' and C' to find the reduced results

(@)= fad™ ",

n—n—2 (E.15)
=3 fa >, ¢"T01¢70)
n m=0
and the relation
o Flo) = F(g)
C(q) = (0| o 10) (E.16)

is implied by these forms.
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We turn finally to the case of many matrices, where it is convenient to use the
word notation

(¢w)rs = (¢m1 ¢m2 e ¢mn)rs 5 ¢w - ¢m1 ¢m2 e ¢mn y (E17a)

w=mymg--- My, [w]=n. (E.17b)

As shown, we will write [w] for the length of the word, and we will write wy ~ ws if
the words w; and ws differ only by a cyclic permutation of their letters. The O(N?)
trace class variables ( are now defined as

Cw(¢) = ‘Tr(¢w)N_1_%[w] ) CO =1, (E18)

where 0 denotes the null word and we have picked the normalizing constant C(N) =
1/N [see (2.25a)]. The action S(¢) is a general function of the set of cyclically
inequivalent (,,’s (i.e. the set of all (,,’s, modded out by the ~ operation).

As in the one-matrix case, the AT A terms are down

Cr = ilmyy, Fit] = dlmp, Fifl = [A7, (A™) ] = ATH(A™M), (E.19)
in the definition of C.

Following the one-matrix discussion above, we now find the following expressions
for F and C:

arzvTsw ¥ wo((F)),  ®m
Sw(¢) = agc(f) : (E.20c)

Then using the theorem of App. C, we find that both sets of quantities are densities
at large N, with the reduced forms:

Fmiz 01Su(@)[0) > ¢*, (E.21a)

Conn = D (01Sw(9)[0) > (0[¢u(¢)[0)0". (E.21b)

These relations generalize Eqgs. (4.13b) and (4.17b) of the text.

Appendix F. More on the Operators C and D
In unreduced form, the operators C' and D of Sec. 4 are defined by

AT (A™M)y = O™ 4 (A1) AT (F.1a)

rt

AL (A™)e = DI + (A™) AT (F.1b)
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AT = —(Fm +ml),
\i_ (F.1c)
(AmT)Ts = E(F;? — i)

and so we see that C]." and D" are each a mixture of regular and irregular
composites (see App. D).

In the previous appendix, we noted that the last terms in (F.la), (F.1b) are
down by O(N~2), and this gives the reduced expressions

An Al = Choun s A Al = Dy (F.2)

in the large N limit.
Here we will find a relation between C' and D using their exact definitions as
commutators in the unreduced theory

Crs = [Art7 (A T)t ] = [Frt ’ Trts] + §[ﬂ-rt7 Fts} ) (F3a)
Drs = [Ats7 (A T)T‘t] = [Fts ) Tt] + E[ﬂ-ts ’ Frt] : (ng)

By examining these formulas, we find that
Dt =Crm (F.4)

the reduced form of which was derived by other means in (4.12c).
Using the flatness relations (4.4b) with (F.3b) we also obtain

—_—~—

for the reduced operator D; and from this follows the surprising formula

(Al A,) =0. (F.6)
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