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We introduce a complete set of gauge-invariant variables and a generalized Born–
Oppenheimer formulation to search for normalizable zero-energy asymptotic solutions
of the Schrödinger equation of SU(2) matrix theory. The asymptotic method gives only
ground state candidates, which must be further tested for global stability. Our results
include a set of such ground state candidates, including one state which is a singlet under
spin (9).

1. Introduction

The N = 16 supersymmetric gauge quantum mechanics,1–3 including its action

formulation by dimensional reduction, was first studied in 1984–85. The model was

noted again in 1988–89 as a regularization,4 with a continuous spectrum,5 of the

D = 11 supermembrane. In early 1996 the model was identified6 as the dynamics

of interacting D0-branes, which led to further study, including a truncated version

of the model7 and the identification by D0 scattering8,9 of the scale of D0 physics

with the scale of D = 11 supergravity.

Interest in the N = 16 model exploded in late 1996, when the large n limit

of the model, now christened matrix theory, was proposed10 as a nonperturbative

formulation of M theory. Among the many papers since then, we mention only

the extension11 of the conjecture to include finite n and those papers with direct

relevance to the ground state of the theory, in particular the study of the Witten

index of the theory12–14 and the ongoing study of the zero supercharge condition

for SUSY ground states.15,16
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Since the original work of Claudson and Halpern, however, the ground state

wave function of the theory has remained elusive. One obstruction to the investiga-

tion of such dynamical questions, pointed out in the original paper, is that matrix

theory has no conserved fermion number, which blocks the fermion sector analysis

applicable to simpler supersymmetric quantum-mechanical systems. As a conse-

quence, one expects that any particular matrix theory eigenstate is spread over a

considerable portion of the fermionic Hilbert space. The lore6,10 is that the theory

should have a unique normalizable zero-energy “threshold” bound state, which is a

singlet under spin (9).

In this paper we develop an asymptotic method to search for zero-energy ground

states of the SU(2) matrix theory. The method has two basic ingredients:

• A complete set of gauge-invariant bosonic and fermionic variables,

• A generalized Born–Oppenheimer formulation,

which allow us to extend some of the ideas of Ref. 7. Moreover, there are strong

parallels between our generalized Born–Oppenheimer formulation and the analysis

of Ref. 13. The method yields only candidate ground states, which are gauge-

invariant asymptotic solutions, near the flat directions of the potential, of the zero-

energy Schrödinger equation of the theory. The ground state candidates must be

further checked for global stability at nonasymptotic values of the gauge-invariant

distance R.

Our results include a set of such candidate ground states, including exactly one

state which is a singlet under spin (9) and which, as it turns out, has bosonic angular

momentum l = 2. The fermionic structure of the ground state candidates is rela-

tively simple in the asymptotic domain, though one expects increasing complexity

at higher order in R−1.

Matrix theory

We will follow the original notation1 for the theory, beginning with the 16 super-

charges Qα,

Qα = (ΓmΛa)απ
m
a + igfabc(Σ

mnΛa)αφ
m
b φ

n
c , (1.1a)

[φma , π
n
b ] = i~δabδmn , {Λaα,Λbβ} = δabδαβ , (1.1b)

{Γm,Γn} = 2δmn , Σmn = − i
4

[Γm,Γn] , (1.1c)

a = 1 · · · g , m = 1 · · · 9 , α = 1 · · · 16 , (1.1d)

where φma are the real bosonic variables and fabc are the Cartesian structure con-

stants of any compact Lie algebra with dimension g. The gamma matrices (Γm)αβ
are real, symmetric and traceless and the fermions Λaα are real. We will also need

the generators Ga of gauge transformations,

Ga = fabc

(
φmb π

m
c −

i~
2

ΛbαΛcα

)
, (1.2)
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and the generators Jmn of spin (9),

Jmn = π[m
a φn]

a −
~
2

Λaα(Σmn)αβΛaβ , (1.3)

where [mn] means antisymmetrization of indices.

The supercharges satisfy

{Qα, Qβ} = 2δαβH + 2g(Γm)αβφ
m
a Ga , (1.4)

where H is the Hamiltonian

H = HB +HF , (1.5a)

HB =
1

2
πma π

m
a + V , V =

g2

4
fabcφ

m
b φ

n
c fadeφ

m
d φ

n
e , (1.5b)

HF = − ig~
2
fabcΛaα(Γm)αβφ

m
b Λcβ , (1.5c)

and the gauge-invariant states Ga|G.I.〉 = 0 form the physical subspace of the

theory.

2. Bosonic Preliminaries

In this section we sharpen our tools on some bosonic subproblems, allowing the

Lorentz vector index to run over m = 1 · · · d, d ≥ 3 for generality, although d = 9

for matrix theory.

2.1. Gauge-invariant bosonic variables

For the gauge group SU(2), with fabc = εabc, it is useful to define the real symmetric

matrix Φ,

Φab ≡ φma φmb , a, b = 1, 2, 3 , (2.1)

and the solutions to its eigenvalue problem,

Φabψ
i
b = λ2

iψ
i
a , i = 1, 2, 3 , (2.2a)

ψiaψ
j
a = δij , ψiaψ

i
b = δab , (2.2b)

λ3 ≥ λ2 ≥ λ1 ≥ 0 . (2.2c)

The eigenvectors ψ form a real orthogonal matrix and the eigenvalues λ are a

complete set of rotation- and gauge-invariant bosonic variables for this case.

A complete set of 3(d−1) independent gauge-invariant bosonic variables includes

the three eigenvalues λ and the 3(d− 2) gauge-invariant angular variables

ηmi ≡
φma ψ

i
a

λi
, ηmi η

m
j = δij . (2.3)
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In the first part of this paper, we focus primarily on the gauge- and rotation-

invariant λ’s, returning to the η’s in Sec. 7. For the gauge group SU(3), there are

more gauge-invariant variables, including dabcφ
m
a φ

n
b φ

p
c .

On functions of λ = (λ1, λ2, λ3), the bosonic Hamiltonian takes the form

HB = −~
2

2
∆ + V , ∆ = ∂ma ∂

m
a , (2.4a)

∆f(λ) = ρ−1 ∂

∂λi

(
ρ
∂

∂λi
f(λ)

)
, (2.4b)

V =
g2

2
(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1) , (2.4c)

ρ(λ) ≡ (λ1λ2λ3)d−3(λ2
3 − λ2

1)(λ2
3 − λ2

2)(λ2
2 − λ2

1) ≥ 0 , (2.4d)

where ∂ma = ∂/∂φma and HB is Hermitian in the inner product∫
d3λρ(λ)f∗(λ)g(λ) , d3λ ≡ dλ1dλ2dλ3 . (2.5)

More generally, the full bosonic measure is

(dφ) = d3λρ(λ)(dΩ) , (2.6a)∫
(dΩ) = 1 , (2.6b)∫

(dΩ)f(φ) = 0 when f(φ) = −f(−φ) , (2.6c)

where Ω are 3(d − 1) “angles” [which include the 3(d − 2) gauge-invariant angles

η in (2.3), plus three gauge degrees of freedom]. Through Sec. 6 of this paper, the

relations (2.6b) and (2.6c) are all we shall need to know about Ω.

2.2. Zero-energy Hamilton Jacobi equation

It was emphasized by Claudson and Halpern that a SUSY ground state must satisfy

the zero-energy Hamilton–Jacobi equation

ψ ∼
~→0

exp

(
±S0

~

)
, (2.7a)

1

2
|∇S0|2 = V , (2.7b)

in the extreme semiclassical limit, and this equation takes the d-independent form(
∂S0(λ)

∂λi

)(
∂S0(λ)

∂λi

)
= g2(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1) (2.8)
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when we restrict ourselves to gauge- and rotation-invariant wave functions. These

authors also gave an exact solution of Eq. (2.7b) or (2.8):

S0(λ) =
√
W , (2.9a)

W =
1

6
g2εabcεdefφ

m
a φ

n
b φ

p
cφ
m
d φ

n
eφ

p
f (2.9b)

= g2 det Φ (2.9c)

= g2λ2
1λ

2
2λ

2
3 . (2.9d)

Here, we make a brief systematic study of the solutions of the zero-energy Hamilton–

Jacobi equation (2.8).

For this investigation, it is convenient to introduce spherical coordinates

λ1 = r sin θ cosφ , λ2 = r sin θ sinφ , λ3 = r cos θ , (2.10a)

r2 = λ2
1 + λ2

2 + λ2
3 , (2.10b)

and to write the solution in the form

S0 = gr3F (θ, φ) . (2.11)

Then the Hamilton-Jacobi equation (2.8) reduces to

sin2 θ(9F 2 + F 2
θ ) + F 2

φ = sin4 θ(cos2 θ + sin2 θ cos2 φ sin2 φ) , (2.12)

where the subscripts denote partial derivatives. The right side of (2.12) is propor-

tional to V , so the flat directions of V correspond to θ = 0 in these variables.

For small θ, (2.12) admits two solutions which are nonsingular as θ→ 0:

S0 =
gr3θ2

2

{
sin 2(φ− φ0)

1

}
+O(θ3) . (2.13)

The first solution, which we call the Claudson–Halpern (CH) branch, contains the

CH solution S0(λ) =
√
W when φ0 = 0, and the second solution is the solution

S0(λ) ∼= V
gr , studied later by Itoyama.17,18 The φ0 6= 0 solutions of the CH branch

are new.

Because the exponential decrease of exp(−S0

~ ) at large r is lost near θ = 0, none

of these solutions is normalizable,a whether we choose the naive measure d3λ or the

quantum measure d3λρ(λ). More precisely, we find nonnormalizability in the flat

directions

aWe note in passing that the full bosonic Hamiltonian HB has exact gauge-invariant zero-
energy solutions

ψ(W ) = W γK2|γ|

(√
W

~

)
∼
~→0

exp

(
−
√
W

~

)
, γ =

4− d
4

,

and K → I, where K and I are cylinder functions of imaginary argument. These solutions are
quantum extensions of the Claudson–Halpern solution, but neither is normalizable.
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d3λ exp

(
−2S0

~

)
∝
∫

0

dθ

θ
, (2.14a)

∫
d3λρ(λ) exp

(
−2S0

~

)
∝
∫

0

dθ

θ3
(2.14b)

for the Itoyama solution and the CH branch with 0 < φ0 <
π
4 . (For small θ the

range of the angle φ is π
4 ≤ φ ≤ π

2 .) The CH solution itself, with φ0 = 0, has an

extra multiplicative divergence in the φ integration.

It is clear that the Hamilton–Jacobi equation by itself is unable to choose

among solutions or to answer the question of normalizability: any of the solutions

might, in principle, be made normalizable by quantum corrections including the

fermions, and

ψ ∼ exp

[
−1

~
(S0 + ~α ln r)

]
(2.15)

is normalizable in d3λρ(λ) when α > 3
2 for the Itoyama solution and for the CH

branch with 0 < φ0 <
π
4 . For the CH solution itself, normalizability requires that

α > 3. In what follows, our task is to study such quantum corrections in detail.

It is also important to note that our study of the zero-energy Hamilton–Jacobi

equation is incomplete because the full equation (2.7b) allows other (gauge- but

not rotation-invariant) solutions, which include the η variables in (2.3) as well

(see Sec. 7).

2.3. Born Oppenheimer approximation

Our approach in this paper follows the line of the Born–Oppenheimer approxima-

tion,19 which we illustrate first on the gauge- and rotation-invariant sector of the

bosonic Hamiltonian

HBψ(λ) = Eψ(λ) , (2.16a)

V =
g2

2
[R2(λ2

1 + λ2
2) + λ2

1λ
2
2] , (2.16b)

where we have set R = λ3. Our goal is to study the asymptotic behavior at large

R near the classical flat directions, λ1 = λ2 = 0, of V . In the language of the

Born–Oppenheimer approximation, we integrate out the “fast” variables λ1, λ2 to

obtain an effective Hamiltonian for the asymptotic behavior in the “slow” variable

R = λ3.

Toward this end we first decompose the Hamiltonian and the measure as

HB = H0 +H1 , (2.17a)

H0 = −~
2

2

[
∂2

∂λ2
1

+

(
d− 3

λ1
+

2λ1

λ2
1 − λ2

2

)
∂

∂λ1
+

∂2

∂λ2
2

+

(
d− 3

λ2
+

2λ2

λ2
2 − λ2

1

)
∂

∂λ2

]
+
g2

2
R2(λ2

1 + λ2
2) , (2.17b)
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H1 = −~
2

2

[
∂2

∂R2
+

(
d+ 1

R
+

2(λ2
1 + λ2

2)

R3
+ · · ·

)
∂

∂R

− 2

R2

(
λ1

∂

∂λ1
+ λ2

∂

∂λ2
+ · · ·

)]
+
g2

2
λ2

1λ
2
2 , (2.17c)

ρ = Rd+1σ , (2.17d)

σ ≡ (λ1λ2)d−3(λ2
2 − λ2

1)

(
1− λ2

1

R2

)(
1− λ2

2

R2

)
, (2.17e)

where we will see that H0 is the dominant part of HB at large R and the dots in

H1 indicate terms with higher inverse powers of R.

The first term H0 in (2.17b) describes a rotation- and gauge-invariant two-

dimensional oscillator whose frequency is linear in R. The nodeless eigenstate

uR(λ1, λ2) = C(R)R
(d−1)

2 exp

[
−
(
gR

2~

)
(λ2

1 + λ2
2)

]
, (2.18a)

E0(R) = ~gR(d− 1) , (2.18b)∫
d2λσ|uR|2 = 1 (2.18c)

is almost certainly the unique ground state of H0 (see App. G), where E0(R) is the

energy and d2λ = dλ1dλ2. The power of R in uR guarantees that C(R) approaches

a constant at large R,

|C(R)|2 =
(d− 3)!

2d−1
[1 +O(R−3)] , (2.19)

because

λ1, λ2 = O

[(
~
g

) 1
2

R−
1
2

]
(2.20)

when averaged over |uR|2. The orders of magnitude in (2.20) define the quantum

neighborhood of the classical flat directions of the potential.

In this paper we compute only through O(R−2), and, for this purpose, C(R)

may be treated as a constant. Similarly, the measure σ in (2.17e) can be replaced

by its asymptotic form

σ → σ∞ = (λ1λ2)d−3(λ2
2 − λ2

1) (2.21)

in all computations through O(R−2).

More generally, all the eigenfunctions of H0 can be written as the normalizing

power of R in (2.18a) times functions of the scaled variables

z1 = λ1

(
g

~
R

) 1
2

, z2 = λ2

(
g

~
R

) 1
2

, (2.22)
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and the corresponding eigenvalues are all proportional to R. At finite values of

z1,2, it follows that, throughout the Hilbert space of H0, we may estimate the order

of magnitude of λ1 or λ2 at large R as O(R−
1
2 ) [as recorded in (2.20)], and the

derivatives with respect to λ1 or λ2 as O(R
1
2 ). Using these orders of magnitude,

one sees that H0 is the dominant part of HB [contains all terms of O(R)] in the

gauge- and rotation-invariant sector and H1 = O(R−2).

Another way to view the large R expansion of this paper, although we have

chosen not to write things out in this way, is to use as independent variables

(z1, z2, λ3 = R), and then formally expand in powers of R−1.

The conventional Born–Oppenheimer approximation is essentially first order

perturbation theory in H1 around uR. In variational language, we study a separable

trial wave function of the form

ψ(λ) = uR(λ1, λ2)ψ(R) , (2.23)

where ψ(R) may be called the reduced wave function or state vector. Averaging

over the fast variables, we obtain an effective Hamiltonian for the slow variable R,

Heff(R)ψ(R) = Eψ(R) , (2.24a)

Heff(R) =

∫
d2λσu∗RHBuR , (2.24b)∫

dRRd+1|ψ(R)|2 <∞ , (2.24c)

where the normalization condition on the reduced state vector is given in (2.24c).

The effective Hamiltonian (2.24b) can be evaluated exactly but we confine ourselves

in this paper to the leading terms [through O(R−2)] at large R.

Using the integrals given in App. F, we obtain the asymptotic form of the effec-

tive Hamiltonian

Heff(R) = g~(d− 1)R− ~
2

2

(
d2

dR2
+
d+ 1

R

d

dR
+

B

R2
+ · · ·

)
(2.25a)

B = − (d− 1)(d− 9)

4
(2.25b)

whose linear potential is nothing but E0(R) in (2.18b). The coefficient of the first

derivative term in (2.25a) could have been fixed in advance by hermiticity of Heff

in the reduced measure Rd+1 of Eq. (2.24c), and in fact the operator

∆R =
d2

dR2
+
d+ 1

R

d

dR
(2.26)

is the natural Laplacian on this measure.

For this bosonic case, the positive potential growing linearly with R gives E > 0

normalizable bound states which show exponential decrease,

ψ(R) ∼ exp

[
− 2

3

(
2g(d− 1)

~

) 1
2

R
3
2

]
, (2.27)
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at large R. For the full matrix theory, we expect from Ref. 7 that the fermionic

contributions will exactly cancelb the bosonic contribution E0(R) = 8g~R, leaving

an effective Hamiltonian of the form

Heff(R) = −~
2

2

(
d2

dR2
+
d+ 1

R

d

dR
+
B′

R2
+ · · ·

)
, (2.28)

and such a Hamiltonian can have an asymptotic power-law-behaved zero-energy

normalizable bound state, provided that

B′ <
d2 − 4

4
. (2.29)

The problem here is that the Born–Oppenheimer approximation cannot be

trusted to give the true value of the constant B′, even approximately, because

(unlike molecular physics) matrix theory has no natural small parameters to con-

trol the approximation. In what follows, we develop an improved formalism which

allows us to compute the necessary coefficient B′ exactly in matrix theory.

3. Generalized Perturbation Theory

In order to study the asymptotic behavior of the wave function, we need a proce-

dure which combines the idea of the Born–Oppenheimer approximation with the

techniques of perturbation theory. Here is such a general formalism for studying

the equation

L|Ψ〉 = 0 , (3.1)

in which the linear operator is L = H −E and |Ψ〉 is a vector in the Hilbert space

of H.

We start by choosing a normalized state |·〉 in the Hilbert space and its associated

projection operators

P = P 2 = |·〉〈·| , Q = Q2 = 1− P , (3.2)

and the action of these projection operators on the state vector will be written as

|ΨP 〉 = P |Ψ〉 , |ΨQ〉 = Q|Ψ〉 . (3.3)

The original Schrödinger equation (3.1) is then broken down into two coupled

equations. The first equation is

PLP |ΨP 〉+ PLQ|ΨQ〉 = 0 (3.4)

or, equivalently,

〈·|L|·〉〈·|ΨP 〉+ 〈·|LQ|ΨQ〉 = 0 , (3.5)

bFollowing Ref. 7, we expect that sectors with uncanceled linear R terms are associated to excited
states.
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and the second equation is

QLP |ΨP 〉+QLQ|ΨQ〉 = 0 , (3.6)

which can be formally solved as

|ΨQ〉 = −(QLQ)−1QLP |ΨP 〉 . (3.7)

If we substitute (3.7) into (3.4), we get the “reduced” Schrödinger equation,

[PLP − PLQ(QLQ)−1QLP ]|ΨP 〉 = 0 (3.8)

or, equivalently,

[〈·|L|·〉 − 〈·|LQ(QLQ)−1QL|·〉]〈·|Ψ〉 = 0 . (3.9)

One can also write a variational principle for the exact solution of (3.6):

J [χ] = 〈χ|QLQ|χ〉+ 2〈χ|QLP |ΨP 〉 , (3.10)

where J is stationary under variations of |χ〉 about |ΨQ〉.
This formulation is exact and can be adapted to a number of different appli-

cations. For the familiar problem of nondegenerate perturbation theory, where

L = H0 − E + V , one chooses P to project onto a particular eigenstate of H0, and

then the introduction of power series expansions into Eqs. (3.7) and (3.8) leads to

familiar formulas.

We may illustrate this situation by choosing

|Ψ〉 = |p〉 , (H0 + V )|p〉 = Ep|p〉 , H0|p〉0 = E0
p |p〉0 , (3.11a)

|·〉 = |p〉0 , P = |p〉0 0〈p| , |ΨP 〉 = |p〉0 0〈p|p〉 . (3.11b)

Equation (3.8) then becomes the energy equation,

Ep = E0
p + Vpp +

∑
m,n

′Vpm[1 +Q(H0 −Ep)−1QVQ]−1
mn

Vnp

Ep −E0
n

, (3.12)

and Eq. (3.7) becomes the wave function equation,

0〈m 6= p|p〉 =

{∑
n

′[1 +Q(H0 −Ep)−1QVQ]−1
mn

Vnp

Ep −E0
n

}
0〈p|p〉 , (3.13)

and both are easily iterated to any desired order of the perturbation V . In this

example, each choice of projector P is a choice to study a “nearby” exact state |Ψ〉.
In the case of degenerate perturbation theory, one starts by choosing P as the

projector into the degenerate subspace of interest and Eq. (3.8) becomes a matrix

equation in that subspace.
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For generalized Born–Oppenheimer problems, we proceed as follows. The origi-

nal problem involves a number of coordinates, which we partition into two groups,

called x (the “fast” variables) and y (the “slow” variables):

|Ψ〉 = |Ψ(x, y)〉 , (3.14)

and we choose a particular projector P to act only on the x variables:

|·〉 = |ψ0(x)〉R , (3.15a)

P = |·〉〈·| = |ψ0(x)〉R
∫
dx′ R〈ψ0(x′)| . (3.15b)

In this class of applications, the partition into fast and slow variables and the choice

of the projector state and its symmetry determine a preferred sector of the Hilbert

space. In practice, our choice of projector state |·〉 below will be guided by the need

to cancel the linear term in R in (2.25). The projected state is

|ΨP 〉 = |ψ0(x)〉R|ψ(y)〉 , (3.16a)

|ψ(y)〉 = 〈·|Ψ(x, y)〉 =

∫
dx′ R〈ψ0(x′)|Ψ(x′, y)〉 , (3.16b)

where |ψ(y)〉 will be called the reduced state vector. Note that inner products with

this projection operator involve integration over the fast variables x but not over

the slow variables y; the symbol R stands for a subset of the y variables, and the

subscript R is placed on the projector state |ψ0(x)〉R to indicate that this vector in

the Hilbert space of the x variables may be parametrized by some of the y variables.

In these applications Eqs. (3.4) and (3.8) are reduced Schrödinger equations

in the slow variables y, the fast variables x having been integrated out, and in

particular Eq. (3.9),

{〈·|H −E|·〉 − 〈·|HQ(Q(H −E)Q)−1QH|·〉}|ψ(y)〉 = 0 , (3.17)

is the effective Schrödinger equation for the reduced state vector |ψ(y)〉. The terms

of (3.17) are in 1–1 correspondence with the terms of (3.4),∫
dxR〈ψ0(x)|H −E|ψ0(x)〉R|ψ(y)〉+

∫
dxR〈ψ0(x)|H|ΨQ(x, y)〉 = 0 , (3.18)

and the first term would give the “first order” Born–Oppenheimer approximation

[i.e. Eqs. (2.24a) and (2.24b)] if we were to ignore the second term. The second

term can contribute in principle, however, to the effective Hamiltonian for |ψ(y)〉,
and so we must proceed to solve the other Eq. (3.6),

QH|ψ0(x)〉R|ψ(y)〉+Q(H −E)|ΨQ(x, y)〉 = 0 , (3.19)

for the state |ΨQ(x, y)〉. If we have some small quantity, such as 1
R

at large R,

solutions of the system may be carried out in practice to any desired order of the

small quantity.
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Application of this machinery to matrix theory requires that we first make some

transformations from the original variables.

4. Canonical Transformations

We focus now on the fermionic variables Λaα of matrix theory and carry out canon-

ical transformations in order to introduce gauge-invariant fermions (Subsec. 4.1)

and to obtain a form of the Hamiltonian (Subsec. 4.2) which is amenable to the

computational method of the previous section.

In what follows we scale out ~ and the coupling constant g, according to the re-

lations

Qα(~, g;φ) = (g~2)
1
3Qα(1, 1;φ′) , (4.1a)

H(~, g;φ) = (g~2)
2
3H(1, 1;φ′) , (4.1b)

φ =

(
~
g

) 1
3

φ′ , (4.1c)

and it is really φ′ which appears below, although we drop the prime. At any point,

the reader may reinstate these parameters with the substitution

φ→
(
g

~

) 1
3

φ (4.2)

and the rescalings of Qα and H above.

4.1. Gauge-invariant fermions

Our first step involves the introduction of gauge-invariant fermions, using the eigen-

vectors ψia, which were introduced in (2.2). The gauge-invariant fermions are de-

fined as

Λ′iα ≡ ψiaΛaα , i = 1, 2, 3 , α = 1 · · · 16 , (4.3)

and these preserve the anticommutation relations

{Λ′iα,Λ′jβ} = δijδαβ . (4.4)

Moreover, the gauge-invariant fermions allow us to write the Yukawa term in the

Hamiltonian (1.5) as

HF = − i
2
εijkΛ′iα(Γj)αβΛ′kβλj ≡ −

i

2
εijk(Λ′iΓjΛ

′
k)λj . (4.5)

The real symmetric, traceless and gauge-invariant matrices Γi in (4.5) are de-

fined by

Γi ≡
Γmφma ψ

i
a

λi
= Γmηmi , i = 1, 2, 3 , (4.6a)

{Γi,Γj} = 2δij , (4.6b)
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and they preserve the Clifford algebra as shown. [The 21 gauge-invariant angles ηmi
are defined in (2.3).] In what follows, Γ1,Γ2 and Γ3 are the components of Γi.

The eigenvectors ψia are functions of the bosonic variables φma , so the gauge-

invariant fermions Λ′ are coordinate-dependent and do not commute with the

bosonic derivatives π. We rectify this situation by making an additional canon-

ical transformation to obtain independent bosonic momenta π′:

π′ma = πma + Fma , (4.7a)

Fma =
i

2
(Λ′i(T

m
a )ijΛ

′
j) , (Tma )ij = ψib∂

m
a ψ

j
b , (4.7b)

[π′ma ,Λ′iα] = 0 , (4.7c)

where π′ and φ remain canonical. This allows us to specify that

π′ma |Λ′〉 = 0 , (4.8a)

π′ma [f(φ)|Λ′〉] = −i(∂ma f(φ))|Λ′〉 , (4.8b)

where |Λ′〉 is any state formed with the gauge-invariant fermions. In what follows,

we describe this situation by writing

π′ma = −i∂ma , ∂ma Λ′ = 0 . (4.9)

Further details of this transformation are given in App. A, which notes that the

matrices Tma are divergence-free flat connections.

Appendix A also shows that the gauge generators (1.2) become purely bosonic,

Ga = εabc

[
φmb π

m
c −

i

2
(ΛbΛc)

]
= εabcφ

m
b π
′m
c , (4.10)

when written in terms of the independent canonical momenta π′. This result con-

firms that Ga commutes with Λ′ and tells us that states formed with the Λ′ fermions,

Gaf(λ, η)|Λ′〉 = 0 , (4.11)

are gauge-invariant, as expected, when the bosonic coefficient f is separately gauge-

invariant.

The rotation generators (1.3) also maintain a simple form,

Jmn = π′[ma φn]
a −

1

2
(Λ′iΣ

mnΛ′i) , (4.12)

when expressed in terms of the independent momenta π′. This result shows that,

because ψia is rotation-invariant, the gauge-invariant fermions remain spinors under

spin (9).

Other applications of the gauge-invariant fermions include the following. The

supercharges Qα and the Hamiltonian H can be written entirely in terms of gauge-

invariant quantities. This gauge-invariant formulation of SU(2) matrix theory is
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given in App. B and continued in App. G. Moreover, the complete diagonalization

of the Yukawa term

HF = −
∑
k,ν

µka
+
kνakν (4.13)

is discussed in App. C.

4.2. Further transformations

For our consideration below of large R = λ3 asymptotic behavior, it is convenient

to make another transformation to simplify the leading term in HF :

iΛ′1α(Γ3)αβΛ′2βλ3 = i(Λ′1Γ3Λ′2)R . (4.14)

We further define

Λ′′1 = Γ3Λ′1 , Λ′′2 = Λ′2 , Λ′′3 = Λ′3 , (4.15a)

{Λ′′iα,Λ′′jβ} = δijδαβ , (4.15b)

along with another canonical transformation,

π′′ma = π′ma +Gma , [π′′ma ,Λ′′iα] = 0 , (4.16)

for which π′′ and φ remain canonical. See App. A for further details.

The final form of the gauge generators is

Ga = εabcφ
m
b π
′′m
c , (4.17)

because Λ′′ are also gauge-invariant fermions. The rotation generators are now

Jmn = π′′[ma φn]
a −

1

2
(Λ′′i ΣmnΛ′′i ) (4.18)

and it follows that the Λ′′ fermions remain spinors under spin (9).

The final form of the Hamiltonian that results from our canonical transforma-

tions is the following (we now drop all primes for simplicity):

H = HB +HF +HS , (4.19)

where

HB =
1

2
πma π

m
a + V , (4.20a)

HF = i(Λ1Λ2)R+ i(Λ2Γ1Λ3)λ1 + i(Λ3Γ2Γ3Λ1)λ2 , (4.20b)

HS = −(Fma +Gma )πma +
1

2
Fma F

m
a +

1

2
Gma G

m
a + Fma G

m
a . (4.20c)
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Here

πma = −i∂ma = − i∂

∂φma
, ∂ma Λiα = 0 , (4.21a)

Fma = i(Λ1Γ3Λ2)(Tma )12 + i(Λ1Γ3Λ3)(Tma )13 + i(Λ2Λ3)(Tma )23 , (4.21b)

Gma =
i

2
(Λ1(Γ3∂

m
a Γ3)Λ1) , (4.21c)

and the connection T is as defined in (4.7). Note that HF in (4.20b) is the original

Yukawa term, now written in terms of the gauge-invariant fermions, and the shift

term HS , which is quartic in the gauge-invariant fermions, is the result of our

canonical transformations.

Our third and final step is to introduce gauge-invariant fermion creation and

annihilation operators for Λ1 and Λ2:

Λ1α =
aα + a+

α√
2

, Λ2α =
aα − a+

α

i
√

2
, (4.22a)

{aα, a+
β } = δαβ . (4.22b)

This gives the first term in HF as

i(Λ1Λ2)R = R

(∑
α

a+
αaα − 8

)
(4.23)

and the gauge-invariant empty state |0〉, defined by

aα|0〉 = 0 , (4.24)

gives the lowest value, −8R, for this operator.

The final form of the rotation generators is

Jmn = π[m
a φn]

a − a+
α (Σmn)αβaβ −

1

2
(Λ3ΣmnΛ3) , (4.25)

so that the state |0〉 is invariant under rotations of the Λ1,Λ2 fermions.

5. The First Computation

The Hamiltonian (4.19) acts in the Hilbert space of the following 75 variables:

• 27 bosonic variables φna , which we have packaged into 3 gauge- and rotational-

invariant “lengths” — λ1, λ2, λ3 — and 24 remaining “angles” Ω.

• 48 fermionic operators, where 32 have been packaged into the gauge-invariant

annihilation and creation operators aα and a+
α and another 16 gauge-invariant

fermions Λ3α.

We begin the computation by choosing a partition into the fast variables,

“x” variables: λ1, λ2, aα, a
+
α , Ω , (5.1)



4382 M. B. Halpern & C. Schwartz

and the slow variables,

“y” variables: λ3 = R,Λ3α , (5.2)

although we will discuss a slightly different partition in Sec. 7.

Next, we must choose a particular projection operator P and its associated

projector state |·〉. Our choice is

|·〉 = |ψ0(x)〉R = uR(λ1, λ2)|0〉 , (5.3a)

|ΨP 〉 = |·〉|ψ(R,Λ3)〉 = |ψ0(x)〉R|ψ(R,Λ3)〉 , (5.3b)

where uR(λ1, λ2) is as defined in Eq. (2.18) and |0〉 is the empty fermion state for

Λ1 and Λ2 defined in (4.24). This state |·〉 is the gauge-invariant analog of the

approximate ground state introduced in Ref. 7, and, as discussed by these authors,

it will guarantee the desired cancellation of the term linear in R in the effective

Hamiltonian (2.25).

This leaves us to study the reduced state vector |ψ(R,Λ3)〉 in the “y” variables,

|ψ(R,Λ3)〉 = 〈·|Ψ(x, y)〉 = 〈·|ΨP 〉 =

∫
d2λ(dΩ)σu∗R(λ1, λ2)〈0|Ψ(x, y)〉 , (5.4)

where σ is as defined in (2.17e) and the normalization integral is∫
dRR10〈ψ(R,Λ3)|ψ(R,Λ3)〉 <∞ . (5.5)

Consistent with earlier notation, we define

〈·|A|·〉 ≡
∫
d2λ(dΩ)σu∗R(λ1, λ2)〈0|A|0〉uR(λ1, λ2) , (5.6)

where A is any operator which may depend upon both the x and y variables. The

result of this partial average is an operator that depends only upon the y variables

and their derivatives.

We must now go through all the terms in the Hamiltonian (4.19) and answer

the following questions for each operator:

(1) What fermionic selection rules apply with respect to the number operatorNF =

Σαa
+
αaα?

(2) What is the order of magnitude of the operators in powers of R? Here, it is

important to remember that λ1 and λ2 are of order R−
1
2 at large R.

The details of this assessment are given in App. D. The results are given below,

phrased in the language of “matrix elements,” PHP , PHQ, QHP and QHQ, as

these appear in the basic equations (3.4) and (3.6). For reference, the first of these

equations reads

P (H −E)P |ΨP 〉+ PHQ|ΨQ〉 = 0 (5.7)
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or, equivalently,

〈·|H −E|·〉|ψ(R,Λ3)〉+

∫
d2λ(dΩ)σu∗R(λ1, λ2)〈0|H|ΨQ(x, y)〉 = 0 , (5.8)

and we begin by evaluating the first term of this equation.

Generically, H is dominated by terms of O(R). However, for the “diagonal

matrix element” PHP , these leading terms cancel, as anticipated in the discussion

of Subsec. 2.3, and we are left with the terms through O(R−2),

〈·|H − E|·〉 = −1

2

d2

dR2
− 5

R

d

dR
+

12

R2
−E + · · · , (5.9)

which will act on the reduced state vector |ψ(R,Λ3)〉. Here, the dots indicate higher

order terms in 1
R

. If we were to stop here, the asymptotic effective Hamiltonian

would be

H
(1)
eff = −1

2

d2

dR2
− 5

R

d

dR
+

12

R2
, (5.10)

which defines the full first order Born–Oppenheimer approximation, now including

the fermions. Comparing with the earlier bosonic result (2.25) for Heff, we see that

the fermionic contributions have canceled the term linear in R and added the term

+ 12
R2 , which comes from the F 2+G2

2 terms in (4.20c). But we cannot stop here,

because there are other terms of order 1
R2 to be found from the second term of

(5.8), and to evaluate this term we need |ΨQ(x, y)〉.
To solve for |ΨQ(x, y)〉 we turn to the other basic equation (3.6), which we

write as

Q(H −E)Q|ΨQ〉+QHP |ΨP 〉 = 0 (5.11)

or, equivalently,

Q(H − E)|ΨQ(x, y)〉+QH[uR(λ1, λ2)|0〉|ψ(R,Λ3)〉] = 0 . (5.12)

The formal solution of this equation is

|ΨQ〉 = −(Q(H −E)Q)−1QHP |ΨP 〉 . (5.13)

For the term QHP in (5.11) (an “off-diagonal matrix element”) the leading

contribution is of order R−
1
2 and comes only from the second and third terms of

HF in (4.20b):

QHP |ΨP 〉 = QH[uR(λ1, λ2)|0〉|ψ(R,Λ3)〉] (5.14a)

' −λ1(a+Γ1Λ3) + iλ2(Λ3Γ2Γ3a
+)√

2
uR(λ1, λ2)|0〉|ψ(R,Λ3)〉 . (5.14b)

The projection operator Q does not appear in this last expression since we can write

Q = 1− P and P annihilates (5.14b) because 〈0|a+|0〉 = 0. This state has NF = 1

and so the first term of (5.11) also has NF = 1.
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The leading terms in QHQ (the “energy denominator”) will have the generic

O(R) behavior of H. The O(R−
1
2 ) estimate holds for PHQ in Eq. (5.7), the same

as for QHP . Then we can see that the formal expression

(PHQ)(Q(H −E)Q)−1(QHP ) ∼ O(R−
1
2 (R−E +O(R−

1
2 ))−1R−

1
2 ) (5.15)

[substitute (5.13) into (5.7)] will contribute a term of order 1
R2 to the (second term

of the) reduced wave equation (5.7) and we must determine its numerical coefficient.

For this purpose we need to compute only the terms of O(R) in QHQ.

From the details in App. D we find that four terms in H contribute to QHQ at

order R and these include differential operators as well as multiplicative operators in

the bosonic variables. This makes the explicit inversion of the operator Q(H−E)Q

a difficult problem, so we shall go back to Eq. (5.11) and solve it, at large R, as an

inhomogeneous differential equation for |ΨQ〉. This procedure is closely related to

an early technique20,21 in atomic physics.

To solve Eq. (5.11) make the asymptotic ansatz

|ΨQ(x, y)〉 =
−f1(λ1, λ2)(a+Γ1Λ3) + if2(λ1, λ2)(Λ3Γ2Γ3a

+)√
2

× uR(λ1, λ2)|0〉|ψ(R,Λ3)〉 , (5.16)

which is modeled on Eq. (5.14), with the insertion of two unknown functions, f1

and f2. The ansatz is again annihilated by P because 〈0|a+|0〉 = 0. Calculating the

action of Q(H −E)Q on this |ΨQ〉, we find (see App. D) that the asymptotic form

of Q(H − E)|ΨQ(x, y)〉 has the same form as (5.14), involving the same fermion

bilinears, (a+Γ1Λ3) and (Λ3Γ2Γ3a
+). Setting the total coefficients of these fermion

bilinears to zero in (5.11) gives the coupled inhomogeneous differential equations[
− 1

2
(∆1 + ∆2) + RD +

3

λ2
1

+ U + R− E

]
f1 − Zf2 = −λ1 , (5.17a)[

− 1

2
(∆1 + ∆2) + RD +

3

λ2
2

+ U + R− E

]
f2 − Zf1 = −λ2 , (5.17b)

∆1 ≡
(

∂

∂λ1

)2

+

(
6

λ1
+ 2

λ1

λ2
1 − λ2

2

)
∂

∂λ1
, (5.17c)

∆2 ≡
(

∂

∂λ2

)2

+

(
6

λ2
+ 2

λ2

λ2
2 − λ2

1

)
∂

∂λ2
, (5.17d)

D ≡ λ1
∂

∂λ1
+ λ2

∂

∂λ2
, (5.17e)

U ≡ λ2
1 + λ2

2

(λ2
1 − λ2

2)2
, (5.17f)

Z ≡ 2λ1λ2

(λ2
1 − λ2

2)2
, (5.17g)
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for the unknown functions f1 and f2. As planned, we have kept only terms of O(R)

multiplying f1 and f2 on the left of these equations, and the inhomogeneous terms

on the right come from the λ1 and λ2 factors in (5.14b).

In fact, we have found a simple exact particular solution of these equations:

f1 = − λ1

2R−E , f2 = − λ2

2R−E . (5.18)

(Barring such luck, we would have carried out numerical computations, using, for

example, the variational principle mentioned earlier.)

The general solution to (5.17) can also include any solution to the homogeneous

version of the equations, in addition to this particular solution. Because of the

nonvanishing linear terms in R in these equations [which represent Q(H − E)Q],

any solutions of the homogeneous equations will decay exponentially at large R,

as in Eq. (2.27), and can thus be consistently ignored compared to the asymptotic

power law behavior expected for the reduced state vector |ψ(R,Λ3)〉.
Now that we know |ΨQ(x, y)〉 in (5.16), we can compute the large R contribution

to the second term of (5.7):

〈·|HQ|ΨQ〉 = 〈·|λ1(aΓ1Λ3) + iλ2(Λ3Γ2Γ3a)√
2

|ΨQ(x, y)〉 (5.19a)

= − 1

2(2R−E)
〈·|(Λ3(λ2

1 + λ2
2 + 2λ1λ2Θ)Λ3)|·〉

× |ψ(R,Λ3)〉 (5.19b)

= − 1

2(2R−E)

∫
d2λ(dΩ)σ|uR(λ1, λ2)|2

× (Λ3(λ2
1 + λ2

2 + 2λ1λ2Θ)Λ3)|ψ(R,Λ3)〉 . (5.19c)

The gauge-invariant matrix Θ in (5.19) is defined as

Θ ≡ −iΓ1Γ2Γ3 (5.20)

and when we take the average over angles,∫
(dΩ)Θ = 0 , (5.21)

because Θ is odd under reflection of all the φ variables [see (E.18)]. From App. F we

find that the average value of λ2
1 +λ2

2 is 8
R

; and from the anticommutation relations

we have (Λ3Λ3) = 8, so that our result is independent of any representation we might

choose for the Λ3 variables. Then the result of this “second order” calculation,

〈·|HQ|ΨQ〉 = − 16

R2
|ψ(R,Λ3)〉 , (5.22)

is exact through order 1
R2 .
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6. The First Set of Candidate Ground States

Adding the result in Eq. (5.22) to the “first order” terms in Eq. (5.10), we find the

asymptotic form of Eq. (5.7), exact through order 1
R2 :

Heff|ψ(R,Λ3)〉 = E|ψ(R,Λ3)〉 , (6.1a)

Heff = −1

2

d2

dR2
− 5

R

d

dR
− 4

R2
. (6.1b)

This reduced Schrödinger equation has two solutions at E = 0: R−1 or R−8 times

any state |Λ3〉 formed with the gauge-invariant fermions Λ3. The second solution,

|ψ(R,Λ3)〉 ' R−8|Λ3〉 , (6.2)

allows the normalization integral (5.5) to converge at large R. [In the language of

Eq. (2.28), we have found that B′ = 8 < 77
4 .] The result (6.2) is our first asymptotic

set of ground state candidates, which must be tested further for global stability at

nonasymptotic values of R.

These solutions also confirm5 a continuous spectrum for E > 0. With E =
k2

2 , the effective Hamiltonian (6.1) yields plane wave normalizable solutions which

behave as

|ψ(R,Λ3)〉± ' R−5e±ikR|Λ3〉 (6.3)

at large R.

We can also follow the computation backward to reconstruct the asymptotic

form of the candidate ground states |Ψ〉 near the flat directions of the potential V .

Using Eqs. (5.3), (5.16) and (6.2), we find the asymptotic forms

|ΨP 〉 = R−8uR(λ1, λ2)|0〉|Λ3〉 , (6.4a)

|ΨQ〉 =
1

2
√

2R
[λ1(a+Γ1Λ3)− iλ2(Λ3Γ2Γ3a

+)]|ΨP 〉 , (6.4b)

where |0〉 is the ground state of the gauge-invariant fermions Λ1,2 and uR is as given

in Eq. (2.18).

Adding these results, we obtain the full asymptotic form of the candidate ground

states, up to an overall normalization constant,

|Ψ〉 '
{

1 +
R−

3
2

2
√

2
[z1(a+Γ1Λ3)− iz2(Λ3Γ2Γ3a

+)]

}
×R−4 exp

(
− z2

1 + z2
1

2

)
|0〉|Λ3〉 , (6.5a)

z1 = λ1R
1
2 , z2 = λ2R

1
2 , (6.5b)

where the scaled variables z1 and z2 are those defined in Eq. (2.22). In this form of

the candidate ground states, the variables z1,2 are finite and only R is large.
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This result can also be written through this order in 1
R

as

|Ψ〉 ' exp

(
− S

~

)
|0〉|Λ3〉 , (6.6a)

S =
V

gr
+

(
HF

2gr
+ 4~ ln r

)
, (6.6b)

r = (λ2
1 + λ2

2 + λ2
3)

1
2 = (φma φ

m
a )

1
2 = R+O(R−2) , (6.6c)

λ1,2 = O

[(
~
g

) 1
2

R−
1
2

]
= O

[(
~
g

) 1
2

r−
1
2

]
, (6.6d)

where V is the bosonic potential, HF is the Yukawa term and we have reinstated

~ and g following the rule (4.2). The range of validity in (6.6d) (finite z1,2 at large

r) defines the quantum neighborhood of the classical flat direction λ1 = λ2 = 0.

This form of the result shows that these candidate ground states are quantum

extensions of Itoyama’s solution of the zero-energy Hamilton–Jacobi equation, now

made normalizable by the quantum correction 4~ ln r (this corresponds to α = 4 > 3
2

in the discussion of Subsec. 2.2).

This set of candidate ground states does not include a singlet under spin (9). To

see this explicitly, we note that the bosonic prefactor exp(−S~ ) in (6.6) is rotation-

invariant while the rotation generators (4.25) give

Jmn|0〉|Λ3〉 = |0〉
(
− 1

2
(Λ3ΣmnΛ3)

)
|Λ3〉 , (6.7a)

1

2
JmnJmn|0〉|Λ3〉 = 18|0〉|Λ3〉 (6.7b)

on the fermion states. The evaluation of the Casimir operator in (6.7b) follows from

Fierz transformations and properties of the Γ matrices. This shows that all three

irreducible representations of spin (9) in |Λ3〉 (and hence in the candidate ground

states),

|Λ3〉 = |256〉 = |44〉 ⊕ |84〉 ⊕ |128〉 , (6.8)

have the same value of the Casimir. These irreps correspond respectively to the

spin (9) irreps of the 11-dimensional supergraviton:

(1) A symmetric, traceless second rank tensor (gmn),

(2) A totally antisymmetric third rank tensor (Hmnp),

(3) A “gravitino” or Rarita–Schwinger irrep (Bmα );

the first two irreps are bosonic and the last is fermionic.

We also note that the set (6.6) of 256 candidate ground states forms a “zero-index

unit” whose presence cannot violate the index theorem13 for SU(2) matrix theory.

In this connection, it is clear that there are strong parallels between our generalized

Born–Oppenheimer formulation and the computational method of Ref. 13. It is
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difficult to make a quantitative comparison, however, because we are computing

different quantities.

7. A More General Set of Candidates

Having obtained our first set, (6.6), of ground state candidates, we are now in a

position to obtain a more general set of candidates.

One crucial observation is that the angular integration (dΩ) played a very limited

role in the computation of Sec. 5: because our projector state |·〉 was independent

of the angular variables Ω, we needed only
∫

(dΩ) = 1 in every stage except for

Eq. (5.19), where
∫

(dΩ)Θ = 0 eliminated the term proportional to the operator

Θ. This opens the possibility of broadening our perspective by partitioning the

variables Ω into fast and slow variables, while maintaining the requirement that no

linear terms in R should appear in the effective Hamiltonian. In what follows, we

ignore the three gauge degrees of freedom in Ω, keeping only the 21 gauge-invariant

angular variables η, which we give again here for reference:

ηmi =
φma ψ

i
a

λi
, ηmi η

m
j = δij . (7.1)

Recall that these 21 variables plus the 3 λ’s are a complete set of 27 − 3 = 24

gauge-invariant bosonic variables for SU(2).

More precisely, we begin our second computation by choosing the partition

fast (x) variables : λ1, λ2,Λ1,Λ2, η1, η2 (7.2a)

slow (y) variables : λ3,Λ3, η3 (7.2b)

because, as demonstrated below, this will allow us to avoid R terms in the effective

Hamiltonian for the reduced state vector |ψ(R,Λ3, η3)〉. Moreover, we choose the

same η1, η2-independent projector state,

|·〉 = uR(λ1, λ2)|0〉 , (7.3)

used in the first computation, but now we must specify the decomposition of the

η measure in order to integrate out the fast variables η1 and η2. The full gauge-

invariant measure can be written as

(dφ) = d3λρ(λ)(d3η) , (7.4a)

(d3η) = (d2η)(dη3) , (7.4b)

(d2η) =

[ ∏
i=1,2

(
9∏

m=1

dηmi

)
δ(ηni η

n
i − 1)δ(ηpi η

p
3)

]
δ(ηq1η

q
2) , (7.4c)

(dη3) =

(
9∏

m=1

dηm3

)
δ(ηn3 η

n
3 − 1) , (7.4d)



Asymptotic Search for Ground States of . . . 4389

and, in what follows, we will need only the following two properties of (d2η):∫
(d2η) = 1 , (7.5a)∫

(d2η)Θ = 0 . (7.5b)

It is straightforward to see that
∫

(d2η) is independent of η3 and (7.5a) is a convenient

convention. The property in (7.5b) follows because the matrix Θ,

Θ = −iΓ1Γ2Γ3 = −iΓmΓnΓpηm1 η
n
2 η

p
3 , (7.6)

is odd in each of the three η’s while (d2η) is even in η1 and/or η2.
Relative to our first computation, we now have the replacement

(dΩ)→ (d2η) (7.7)

in all averages over fast variables. This includes, for example, the new form of

Eq. (5.6)

〈·|A|·〉 =

∫
d2λ(d2η)σu∗R(λ1, λ2)〈0|A|0〉uR(λ1, λ2) . (7.8)

Correspondingly, the integration over η3 appears only in the new normalization

condition ∫
dRR10(dη3)〈ψ(R,Λ3, η3)|ψ(R,Λ3, η3)〉 <∞ (7.9)

for the reduced state vector.

The second computation (see App. D) then proceeds exactly as did the first
computation, using the same ansatz (5.16) for |ΨQ〉 now with

|ψ(R,Λ3)〉 → |ψ(R,Λ3, η3)〉 (7.10)

for the reduced state vector. The same contributions are obtained [now by
∫

(d2η) =

1] from each term, including the elimination of the Θ term [now by
∫

(d2η)Θ = 0]

in the new version of Eq. (5.19). There is, however, one new contribution to PHP
from the action of the Laplacian ∆ on the angular variables η3 of the reduced state

vector |ψ(R,Λ3, η3)〉. We sketch here only the asymptotic results that we need
for this computation, referring the reader to App. G for the full structure of the

Laplacian on general gauge-invariant functions f(λ, η).

To study the new contribution of the Laplacian, we begin with the identity

(∂ma η
n
i )(∂ma λj) = 0 , (7.11)

which is, in fact, equivalent to Eq. (E.14). It follows that the Laplacian is separable

in the form

∆ = ∆λ + ∆η , (7.12)

where ∆λ, which contains the λ derivatives, is defined in (2.4b) and ∆η contains

only derivatives with respect to the η variables. With the chain rule and the asymp-
totic identity

∂ma η
n
3 =

1

R
(δmn − ηm3 ηn3 )ψ3

a +O(R−
5
2 ) , (7.13)
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we can easily compute the extra asymptotic contribution to PHP as

〈·| − 1

2
∆η|·〉|ψ(R,Λ3, η3)〉 (7.14a)

=

∫
d2λ(d2η)σu∗R(λ1, λ2)

(
− 1

2
∆η

)
uR(λ1, λ2)|ψ(R,Λ3, η3)〉 (7.14b)

=

[
L2

3

2R2
+O(R−3)

]
|ψ(R,Λ3, η3)〉 . (7.14c)

Derivatives with respect to η1 and η2 do not contribute in this computation because

there is no dependence on these variables in uR(λ1, λ2) or the reduced state vector

|ψ(R,Λ3, η3)〉. Moreover, we have organized the result into the angular momentum

operators of η3,

Lmn3 = −iη[m
3 ∂

n]
3 , L2

3 =
1

2
Lmn3 Lmn3 , (7.15)

where ∂m3 = ∂
∂ηm3

. In this result, the η derivatives may be taken as the naive

derivative

∂m3 η
n
3 = δmn (7.16)

or the constrained derivative

∂m3 η
n
3 = δmn − ηm3 ηn3 , (7.17)

which respects the constraint ηm3 η
m
3 = 1: the two give the same operators Lmn3 ,

which generate a bosonic SO(9).

Adding this extra term then, we find the new asymptotic effective Hamiltonian

Heff|ψ(R,Λ3, η3)〉 = E|ψ(R,Λ3, η3)〉 , (7.18a)

Heff = −1

2

d2

dR2
− 5

R

d

dR
+
L2

3 − 8

2R2
, (7.18b)

which is exact through O(R−2). This reduced system becomes a simple radial wave

equation when we introduce the spherical harmonics Yl(η3) of SO(9),

L2
3Yl(η3) = l(l + 7)Yl(η3) , l = 0, 1, 2, . . . , (7.19)

with “magnetic” degeneracy

deg(l) =
(2l+ 7)(l + 6)!

l!7!
. (7.20)

Using the spherical harmonics, we can immediately write down the normalizable

asymptotic solutions

|ψ(R,Λ3, η3)〉 ' R−(l+8)Yl(η3)|Λ3〉 , (7.21a)

|Λ3〉 = |256〉 = |44〉 ⊕ |84〉 ⊕ |128〉 , (7.21b)

for the reduced state vector.
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This set of solutions contains our first solution, (6.2), as the special case with

l = 0, and the set contains exactly one state,

|ψ(R,Λ3, η3)〉l=2 ' R−10Y mn2 (η3)|44;mn〉 , (7.22)

which is a singlet under spin (9). Here we have used an explicit form of the 44-

dimensional Y2(η3),

Y mn2 (η3) = ηm3 η
n
3 −

1

9
δmn , (7.23)

to perform the invariant sum over Y2 times the 44-dimensional irrep in |Λ3〉.
The new effective Hamiltonian (7.18) also exhibits plane wave normalizable so-

lutions

|ψ(R,Λ3, η3)〉± '
Yl(η3)e±ikR

R5
|Λ3〉 (7.24)

and hence a continuous spectrum for E = k2

2 > 0. The earlier result (6.3) is included

in (7.24) when l = 0.

Finally, we may follow the new computation backward to obtain the full asymp-

totic form of our general set of candidate SUSY ground states. One obtains the

generalization of (6.5),

|Ψ〉 '
{

1 +
R−

3
2

2
√

2
[z1(a+Γ1Λ3)− iz2(Λ3Γ2Γ3a

+)]

}
×R−l−4Yl(η3) exp

(
− z2

1 + z2
1

2

)
|0〉|Λ3〉 , (7.25a)

z1 = λ1R
1
2 , z2 = λ2R

1
2 , (7.25b)

and the generalization of (6.6),

|Ψ〉 ' exp

(
− Sl

~

)
Yl(η3)|0〉|Λ3〉 , (7.26a)

Sl =
V

gr
+

{
HF

2gr
+ (l + 4)~ ln r

}
, (7.26b)

r = (λ2
1 + λ2

2 + λ2
3)

1
2 = (φma φ

m
a )

1
2 , (7.26c)

λ1,2 = O

[(
~
g

) 1
2

r−
1
2

]
, (7.26d)

|Ψ〉l=2 ' exp

(
− S2

~

)
Y mn2 (η3)|0〉|44;mn〉 , (7.26e)

Jmn|Ψ〉l=2 = 0 , (7.26f)

where we have recorded in (7.26e) the unique candidate which is a singlet under

spin (9). The extreme semiclassical limit of the l 6= 0 solutions in (7.26) are gauge-

but not rotation-invariant solutions of the zero-energy Hamilton–Jacobi equation.
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The apparent simplicity of the ground state candidates (7.26a and 7.26b) sug-

gests that there may be a more elegant path to this result.

Each of these candidates is a normalizable zero-energy asymptotic solution of

the Schrödinger equation of SU(2) matrix theory, but each must be tested further

for stability at nonasymptotic values of R. The high l solutions are particularly

suspect because they are associated with the growing centrifugal barrier
L2

3

2R2 . Since

the singlet state has l = 2, this leaves the states with l ≤ 2 as the most auspicious

candidates.

Appendix G also outlines a strategy for a proof of a conjecture which, if true,

would tell us that our projector state in (7.3) is the only state in the Hilbert space of

the fast variables (7.2a) that avoids linear terms in R in the effective Hamiltonian.

In this case, our set of candidate ground states would be a complete list for the

partition (7.2) of the variables of SU(2) matrix theory.

Acknowledgments

For helpful discussions, we thank J. de Boer, H. Itoyama, H. Murayama, H. Nicolai,

H. Ooguri, P. Pouliot and P. Yi. The work of M. B. H. was supported in part by

the Director, Office of Energy Research, Office of Basic Energy Sciences, of the

U.S. Department of Energy under contract DE-AC03-76F00098, and in part by the

National Science Foundation under grant PHY95-14797.

Appendix A. Canonical Transformations

In further detail, the shift in (4.7) is

π
′m
a = πma + Fma , (A.1a)

Fma =
1

2i
Λbα(Sma )bcΛcα =

i

2
Λ′iα(Tma )ijΛ

′
jα , (A.1b)

(Sma )bc = ψib∂
m
a ψ

i
c , (Tma )ij = ψib∂

m
a ψ

j
b , (A.1c)

where Λ′ are the gauge-invariant fermions (4.3) and ψia are the eigenvectors of Φ

introduced in (2.2). Further properties of Tma are found in App. E. The quantities

Sma and Tma are real antisymmetric matrices, which we call connections.

Using the orthonormality and completeness of ψia in (2.2), one verifies that φ

and π′ are canonical variables which are independent of Λ′:

[π′ma ,Λ′iα] = 0 , (A.2a)

[φma , π
′n
b ] = iδmnδab , (A.2b)

[π′ma , π′nb ] = 0 , (A.2c)

and this tells us that

π′ma = −i∂ma = −i ∂

∂φma
, ∂ma Λ′iα = 0 (A.3)
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in coordinate representation. These derivatives could be written more precisely as

(∂ma )Λ′ to show that they act on the bosons as usual, but at fixed Λ′.

The statement (A.2c) is equivalent to the fact that Sma and Tma are flat con-

nections,

∂ma S
n
b − ∂nb Sma + [Sma , S

n
b ] = 0 , (A.4a)

∂ma T
n
b − ∂nb Tma + [Tma , T

n
b ] = 0 , (A.4b)

which follows directly from the properties (2.2) of ψia. Moreover, we find that both

connections are divergence-free:

∂ma S
m
a = ∂ma T

m
a = 0 . (A.5)

To see this for Tma , follow the steps

∂ma (Tma )ij =
1

2
∂ma [ψib∂

m
a ψ

j
b − (i↔ j)] (A.6a)

=
1

2
[ψib∆ψ

j
b − (i↔ j)] (A.6b)

= 0 , (A.6c)

where we have used (E.5) in the last step, and similarly for Sma . It also follows that

∂ma F
n
b − ∂nb Fma + i[Fma , F

n
b ] = 0 , ∂ma F

m
a = 0 , (A.7)

and so the current Fma in Eq. (A.1b) is a flat divergenceless connection too.

The canonical transformation (4.7) or (A.1) can also be understood in terms of

a unitary (but not gauge-invariant) transformation K(φ,Λ′(φ)):

π′ma = K−1πma K , (A.8a)

Λ′iα(φ) = K−1Λ′iα(φ0)K , (A.8b)

Λ′iα(φ0) = ψia(φ0)Λaα , (A.8c)

∂ma K = iKFma , K(φ0) = 1 , (A.8d)

K = P exp

[
i

∫ φ

φ0

dφ′ · F (φ′,Λ′(φ′))

]
, (A.8e)

where φ0 is a reference point of φ and Λaα are the original constant but not gauge-

invariant fermions. The path-ordered operatorK is well defined because the current

Fma is a (divergenceless) flat connection.

The gauge-invariant states |Λ′〉 satisfy

π′ma |Λ′(φ)〉 = (−i∂ma + Fma )|Λ′(φ)〉 = 0 (A.9)

and so may be written in terms of the original fermions as

|{Λ′iα(φ)}〉 = K−1|{Λ′iα(φ0) = ψia(φ0)Λaα}〉 , (A.10)

although neither factor on the right is separately gauge-invariant.
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To see the cancellation (4.10) of fermionic terms in the gauge generator Ga, use

Eq. (E.2) for ∂ma ψ
i
b to verify the intermediate steps

εabcφ
m
b ∂

m
c ψ

i
d = εabdψ

i
b , (A.11a)

εabcφ
m
b (Smc )df = εadf , (A.11b)

where Smc is the flat connection in (A.1). The result in (A.11a) says that ψia trans-

forms in the adjoint of the gauge group.

Similarly, the form (4.12) of the rotation generators follows with the steps

φ[m
a ∂n]

a ψ
j
b = 0 , (A.12a)

φ[m
a (Tn]

a )ij = ψibφ
[m
a ∂n]

a ψ
j
b = 0 , (A.12b)

where (A.12a) says that ψia are singlets under spin (9).

When we make the substitution (A.1) in the Hamiltonian, we encounter

1

2
πma π

m
a =

1

2
π′ma π′ma − Fma π′ma +

1

2
Fma F

m
a −

1

2
[π′ma , Fma ] , (A.13)

where the F 2 terms from the shift are quartic in the gauge-invariant fermions. The

last term in (A.13) vanishes, however, because the flat connection Tma has zero

divergence.

The explicit form of the shift term in the second canonical transformation

(4.16) is

Gma =
1

2i
(Λ′1(Γ3∂

m
a Γ3)Λ′1) =

i

2
(Λ′′1(Γ3∂

m
a Γ3)Λ′′1 ) , (A.14)

where Λ′′i are the final gauge-invariant fermions. Further details of the derivatives of

the matrices Γi can be found in App. E. Here again we find that π′′ and φ are canon-

ical variables independent of Λ′′. Moreover, as above, the statement [π′′ma , π′′nb ] = 0

is equivalent to the fact that Γ3∂
m
a Γ3 is a flat connection, and using Eq. (E.13) we

find that this connection is also divergence-free.

The final form (4.17) of the gauge generators Ga is obtained because the shift

term Gma does not contribute to Ga. To see this, use Eq. (E.11) to verify explicitly

that Γi is gauge-invariant,

εabcφ
m
b ∂

m
c Γi = 0 , (A.15)

and hence that εabcφ
m
b G

m
c = 0.

We found the identities

Γ3φ
[m
a ∂n]

a Γ3 = −Γ3Γ[mη
n]
3 , (A.16a)

Γ3ΣmnΓ3 + iΓ3Γ[mη
n]
3 = Σmn (A.16b)

helpful in obtaining the form (4.18) of the rotation generators. Here ηmi are the

gauge-invariant angular variables defined in (2.3).
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Appendix B. Gauge-Invariant Formulation

Given the gauge-invariant fermions Λ′ of Subsec. 4.1 and the additional gauge-

invariant (but not canonical) coordinates and momenta

φmi ≡ ψiaφ
m
a , π′mi ≡ ψiaπ′ma = −i~ψia∂ma = −i~Dm

i , (B.1a)

[π′mi ,Λ′jα] = 0 (B.1b)

[π′ma is the independent momentum in (4.7)], we can rewrite the supercharges and

the Hamiltonian of SU(2) matrix theory entirely in terms of gauge-invariant quan-

tities.

Using the derivative formulas of App. E, the results are

Qα = (ΓmΛ′i)απ
′m
i − i~

∑
i6=j

(λiΓiΛ
′
j)α

(Λ′iΛ
′
j)

λ2
i − λ2

j

+
g

2
εijk(λiΓiλjΓjΛ

′
k)α , (B.2a)

H =
1

2
π′mi π′mi +

g2

2
(λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3)

+
i~
2

∑
i6=j

1

λ2
i − λ2

j

{φmj π′mj + ([Λ′i,Λ
′
j ])φ

m
i π
′m
j }

− ~
2

4

∑
i6=j

(Λ′iΛ
′
j)

2
λ2
i + λ2

j

(λ2
i − λ2

j)
2

+
ig~
2
εijk(Λ′iλkΓkΛ′j) , (B.2b)

where (Λ′iBΛ′j) = Λ′iαBαβΛ′jβ and ([Λ′i,Λ
′
j]) = Λ′iαΛ′jα − Λ′jαΛ′iα. As expected, Q

and H are respectively cubic and quartic in the gauge-invariant fermions, and the

quartic term in the Hamiltonian is just the F 2 term of the shift. The last term

in the Hamiltonian is the Yukawa term HF , whose diagonalization is discussed in

App. C.

Using chain rules, the gauge-invariant momenta π′mi can be evaluated explicitly

when operating on general gauge-invariant bosonic functions f(λ, η), where the η

variables are given in (2.3). The results for π′mi and the bosonic Laplacian on

f(λ, η),

−~2∆ = π′mi π′mi + i~
∑
i6=j

1

λ2
i − λ2

j

φmj π
′m
j (B.3a)

= −~2(∆λ + ∆η) , (B.3b)

are given explicitly in App. G. Here ∆λ, which contains the λ derivatives, is as given

in (2.4b) and ∆η contains the η derivatives.
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We also mention some alternate gauge-invariant forms for the supercharges:

Qα = (Γm(πma + iΘ∂ma
√
W )Λa)α (B.4a)

= (ΓmΛ′i)απ
′m
i − i~

∑
i6=j

(λiΓiΛ
′
j)α

(Λ′iΛ
′
j)

λ2
i − λ2

j

+ i(ΓmΘΛ′i)αD
m
i

√
W . (B.4b)

Here, W = g2 det Φ is the Claudson–Halpern variable and Θ is the gauge-invari-

ant matrix

Θ = −iΓ1Γ2Γ3 , (B.5)

which satisfies Θ2 = 1. Still another form is

Qα =

(
Γm

φmi
λ2
i

Λ′i

)
β

Ciβα − i~
∑
i6=j

(λiΓiΛ
′
j)α

(Λ′iΛ
′
j)

λ2
i − λ2

j

, (B.6a)

Ciαβ =

[
− i~λi

∂

∂λi
+ iΣmnMmn

i − iΘ
√
W

]
αβ

, (B.6b)

Mmn
i = φ

[m
i π
′n]
i , (B.6c)

where the second term in Ci, which is of “spin–orbit” form, contains all the η

derivatives in the supercharge. See App. G for further details.

Appendix C. Diagonalization of the Yukawa Term

In this appendix we discuss the exact diagonalization of the Yukawa term HF in

the Hamiltonian, keeping ~ = g = 1.

We begin with the expression (4.5) for HF in terms of the gauge-invariant

fermions Λ′,

HF = − i
2
εabcΛaΓmφmb Λc =

1

2
Λ′iαMiα,jβΛ′jβ , (C.1a)

i, j = 1, 2, 3 , α, β = 1 · · · 16 , (C.1b)

M = −i


0 λ3Γ3 −λ2Γ2

−λ3Γ3 0 λ1Γ1

λ2Γ2 −λ1Γ1 0

 , (C.1c)

where we have noted that εabcψ
i
bψ

j
c = εijkψ

k
a because the eigenvector ψ is a group

element in the adjoint of SU(2). The gauge-invariant matrix M is Hermitian and

imaginary, which means that its eigenvalues µ are real and occur in ± pairs: if U is

one of the 48 eigenvectors of M with eigenvalue µ, then U∗ is also an eigenvector,

with eigenvalue −µ.
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The matrix M also satisfies

(M2)ij = (r2 − 2λ2
i )δij + λiΓiλjΓj , (C.2a)

[M(M2 − r2)]ij = 2λ1λ2λ3Θδij , (C.2b)

where we have defined r2 = λ2
1 + λ2

2 + λ2
3 and

Θ = −iΓ1Γ2Γ3 . (C.3)

The gauge-invariant matrix Θ (which occurs throughout this paper) is Hermitian

and squares to 1. Then (C.2b) gives us a sixth order algebraic equation for the

eigenvalues of M :

[µ(µ2 − r2)]2 = 4W , (C.4)

where W = (λ1λ2λ3)2 = det(Φ) is the Claudson–Halpern variable. The solutions of

this algebraic equation are six real numbers, in three± pairs, so that each eigenvalue

is eightfold degenerate.

Furthermore, Θ commutes with all of the Γi, and hence with the matrix M ; so

we can label the eigenvectors of M by their Θ eigenvalues ±1. From Eq. (C.4), we

find that the three eigenvalues µk, k = 1, 2, 3, corresponding to the +1 eigenvalue

of Θ satisfy

r ≤ µ3 ≤
2r√

3
, −r ≤ µ2 ≤ −

r√
3
, − r√

3
≤ µ1 ≤ 0 , (C.5a)

µ1 + µ2 + µ3 = 0 , (C.5b)

and the roots −µk correspond to the −1 eigenvalue of Θ.

The origin of the linear relation (C.5b) is as follows: the algebraic equation (C.4)

gives the eigenvalues as functions of the gauge-invariant λ’s, but in fact only two

combinations out of three occur, so that µk = µk(r,W ). We also note for use below

that the positive eigenvalue µ3 in (C.5a) behaves as

µ3 = R+
(λ1 + λ2)2

2R
+ · · · = R+O(R−2) (C.6)

for large R = λ3 and λ1, λ2 = O(R−
1
2 ).

We are now ready to be more explicit about the eigenfunctions of M , which may

be labeled as

Miα,jβU
kν
jβ = µkU

kν
iα , ΘαβU

kν
iβ = +Ukνiα , (C.7a)

Miα,jβU
kν∗
jβ = −µkUkν∗iα , ΘαβU

kν∗
iβ = −Ukν∗iα , (C.7b)

k = 1, 2, 3 ; ν = 1 · · · 8 . (C.7c)

These eigenvectors U and U∗ form a complete orthonormal set,

Ukν∗iα Uk
′ν′

iα = δkk′δνν′ , Ukνiα U
k′ν′

iα = 0 , (C.8a)

Ukν∗iα Ukνjβ = δij

(
1−Θ

2

)
αβ

, Ukνiα U
kν∗
jβ = δij

(
1 + Θ

2

)
αβ

, (C.8b)
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so we can use them to define gauge-invariant creation and annihilation operators

Λ′iα =
∑
k,ν

(Ukνiα a
+
kν + Ukν∗iα akν) , (C.9a)

{akν , a+
k′ν′} = δkk′δνν′ , (C.9b)

and we emphasize the pivotal role of the matrix Θ in the separation into creation

and annihilation terms.

With this expansion, the original Yukawa term is completely diagonalized,

HF = −
∑
k,ν

µka
+
kνakν , (C.10)

and this is the main result of this appendix. Defining |0̃〉 by akν |0̃〉 = 0 as usual,

we find that the state with the lowest fermionic energy, HF ⇒ EF0 , is

( 8∏
ν=1

a+
3ν

)
|0̃〉 : EF0 = −8µ3 , (C.11a)

EF0 = −8R+O(R−2) , (C.11b)

and we note that the asymptotic form of this energy is the negative of the bosonic

energy E0(R) in (2.18).

In this case, one can also make a canonical transformation to independent

canonical momenta π̃ma which commute with the fermion creation and annihilation

operators,

π̃ma = πma +
1

2
Λ′iα(Rma )iα,jβΛ′jβ , (C.12a)

(Rma )iα,jβ = i
∑
k,ν

(∂ma U
kν∗
iα Ukνjβ + ∂ma U

kν
iα U

kν∗
jβ ) , (C.12b)

[π̃ma , akν ] = [π̃ma , a
+
kν ] = 0 , (C.12c)

where Rma is again a flat connection.

We have used this transformation and the decomposition

Ukνia = uki (λ)(Γi)αβχ
ν
β , Ukν∗iα = uki (λ)(Γi)αβχ

ν∗
β , (C.13a)∑

i

uki (λ)uk
′

i (λ) = δkk
′
, (C.13b)

Θχν = +χν , Θχν∗ = −χν∗ (C.13c)
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to study the rotational properties of the states in this fermionic Hilbert space. The

explicit form of the functions uki (λ) is easily obtained, but is not needed here. The

rotation generators take the form

Jmn = π̃[m
a φn]

a +
i

2

∑
k,ν,ν′

[akν , a
+
kν′ ]χ

ν∗(Dmn + iΣmn)χν
′
, (C.14a)

Dmn = φ[m
a ∂n]

a , (C.14b)

in this case, and the following list collects the states which are singlets (Jmn = 0)

under spin (9):

|0̃〉e− 3ω
2 , Ak|0̃〉e−

ω
2 , (C.15a)

AkAk′ |0̃〉e+ω
2 , A1A2A3|0̃〉e+ 3ω

2 . (C.15b)

Here we have defined

Ak ≡
8∏
ν=1

a+
kν , ωma ≡ χν∗α ∂ma χνα = ∂ma ω (C.16)

and the last relation follows because ωma is a flat connection. The “lowest” state

(C.11a) appears in this list, and, owing to (C.11b) this set of states may provide

an alternative description of the spin (9) singlet ground state candidate obtained in

Sec. 7.

Appendix D. Assessment of Terms in the Hamiltonian

Here we examine individual terms, or groups of terms, in the transformed Hamil-

tonian (4.19) and note for each:

(1) Its selection rule with respect to the fermion number operator

NF = Σa+
αaα ; (D.1)

(2) Its order of magnitude in powers of R, using λ3 = R and the fact that λ1 and

λ2 are of order R−
1
2 at large R;

(3) Its contribution to the asymptotic computation, keeping only terms through

O(R−2) in the effective Hamiltonian.

The details below are given for the “first computation” of the text, and comments

are added at the end which discuss the changes needed for the second computation

(which allows η3 dependence in the reduced state vector).

In this discussion, we will use the shorthand PHP,QHQ,PHQ and QHP for

the various terms in the basic equations, where PHP refers to 〈·|H|·〉 in (5.8), QHQ

refers to QH|ΨQ〉 with the ansatz (5.16) for |ΨQ〉, etc. In this language it will be

helpful to state in advance the large R systematics
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H = O(R) , (D.2a)

PHP = O(R−2) , (D.2b)

QHP,PHQ = O(R−
1
2 ) , (D.2c)

QHQ = O(R) , (D.2d)

which we will verify below. These orders of magnitude (and the fact that P |ΨQ〉 =

0) tell us that

Q(H −E)|ΨQ〉 = (H −E)|ΨQ〉+O(R−
1
2 ) (D.3)

and since (as explained in the text) we are interested only in the order R contribu-

tions to these terms, the asymptotic results given here for QHQ come entirely from

the first term of (D.3).

Finally, it will be useful to note that the shift terms Fma in (4.20c) and their

squares can be written as

Fma = (a+Γ3a)(Tma )12 + i(Λ1Γ3Λ3)(Tma )13 + i(Λ2Λ3)(Tma )23 , (D.4a)

Fma F
m
a = (a+Γ3a)2U12 − (Λ1Γ3Λ3)2U13 − (Λ2Λ3)2U23 , (D.4b)

where Uij is as defined in (E.6) and we have used (E.10) to verify that there are no

cross terms in (D.4b).

(1) HB and the first term of HF :

H0 +H1 + λ3(NF − 8) (D.5)

whereHB = H0+H1 is the bosonic Hamiltonian in (4.19). The decomposition of

HB is given in (2.17), now written in terms of independent bosonic derivatives.

This group of terms is O(R) and diagonal in NF , but the terms of order R

cancel in HP because

(H0 − 8R)uR = 0 . (D.6)

The O(R−2) contributions of these terms to PHP are the derivative terms

( d2

dR2 ,
d
dR ) in (5.10), as in the bosonic computation of Subsec. 2.3. The contri-

butions of these terms to QHP and PHQ are negligible in this computation.

For QHQ, it is important to note first that H1 = O(R−2), and so these terms

can be ignored in the present computation. We find that the remaining terms

contribute the O(R) terms which are the first four terms on the left of each of

(5.17a,b), plus the R terms and half of the U terms: the term 1
2U comes from

the operation of ∆ on each Γi in |ΨQ〉 [using (E.12)], while the R term follows

from the λ3NF term of (D.5) and the fact that |ΨQ〉 has NF = 1. The RD

terms come from ∆ acting as one derivative on the f ’s and one derivative on

uR. Other “cross derivatives” vanish by virtue of (E.14).

(2) The second and third terms of HF :

i(Λ2Γ1Λ3)λ1 + i(Λ3Γ2Γ3Λ1)λ2 . (D.7)

This operator changes NF by +1 or −1 and is of order R−
1
2 . It gives the

entire asymptotic contribution to QHP (and to PHQ) for our calculation and

is written out in Eq. (5.14).
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(3) The first term in −Fma πma :

i(a+Γ3a)(Tma )12∂
m
a . (D.8)

This is diagonal in NF and of order R. However, it is zero when acting on

P , owing to (E.9). Its only significant contribution is in QHQ, where it acts

upon the matrices Γ1 and Γ2, according to (E.15). This term exchanges the

fermion bilinears

(Tma )12∂
m
a [(a+Γ3a)

 (a+Γ1Λ3)

(Λ3Γ2Γ3a
+)

 |0〉]
= Z

 (Λ3Γ2Γ3a
+)

−(a+Γ1Λ3)

 |0〉 (D.9)

to leading order in R and produces the “mixing” terms in Eqs. (5.17) propor-

tional to Z.

(4) The second and third terms in −Fma πma : These terms [see (D.4a)] raise or lower

NF by 1 and are 0 acting on P [see (E.9)]; they are too small to make any

contribution to the present calculation.

(5) The term −Gma πma : This gives zero in PHP by (E.14) and is too small to

contribute elsewhere.

(6) The first term in 1
2F

m
a F

m
a : This term [see (D.4b)] is diagonal in NF but zero

when acting on P . A useful fact here is

(a+Γ3a)2a+
α |0〉 = a+

α |0〉 (D.10)

and the asymptotic contribution 1
2U12|ΨQ〉 is obtained for this term in QH|ΨQ〉.

This gives the remaining half of the U terms in (5.17).

(7) The second and third terms in 1
2F

m
a F

m
a : These contribute to PHP as

〈0|1
2
Fma F

m
a |0〉 = 2(U13 + U23) =

4

R2
+ · · · (D.11)

and hence make a contribution of 4
R2 to (5.9).

(8) The term 1
2G

m
a G

m
a : This contributes to PHP as follows. Using (E.16) and

(E.12) we compute

〈0|1
2
Gma G

m
a |0〉 =

1

16
Tr [(∂ma Γ3)(∂ma Γ3)] = − 1

16
Tr [(Γ3∆Γ3)]

=
6

λ2
3

+ U13 + U23 =
8

R2
+ · · · (D.12)

and hence this group of terms contributes + 8
R2 to Eq. (5.9).

(9) The term Fma G
m
a . Using (E.15), this term is negligible in this calculation.
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For the second computation, we must allow for the fact that the reduced state vector

|ψ(R,Λ3, η3)〉 is a function also of the gauge-invariant angular variable η3. This

means that we must re-examine those terms above which involve derivatives with

respect to η3, namely ∆ and the shift terms Fπ andGπ. The result for ∆ is discussed

in Sec. 7, and, because derivatives of η3 are at least one power of R−1 smaller

than the terms we have kept, we find no new contributions from the shift terms.

Appendix E. Derivatives

We list here a number of useful formulas for the differentiation of the bosonic vari-

ables introduced in the text. The notation is

∂ma =
∂

∂φma
, ∆ = ∂ma ∂

m
a

and we adopt here the generalization

m,n = 1 · · ·d ; a, b, c = 1 · · · g ; i, j, k = 1 · · · g (g ≤ d) ,

although only d = 9 and g = 3 apply for SU(2) matrix theory.

Using the familiar method of matrix-perturbation theory, one derives the fol-

lowing two basic formulas for differentiation of λi and ψia, defined in (2.2):

∂ma λi = ψiaψ
i
b

φmb
λi

, (E.1)

∂ma ψ
i
b =

∑
j 6=i

ψjbφ
m
c

ψiaψ
j
c + ψicψ

j
a

λ2
i − λ2

j

. (E.2)

All that follows is derived by repeated application of these relations and the prior

definitions.

When f(λ) is any function of the λi, we have

∆f(λ) =
∑
i

[
∂2

∂λ2
i

+

(
d− g
λi

+
∑
j 6=i

2λi
λ2
i − λ2

j

)
∂

∂λi

]
f(λ) , (E.3)

(∂ma ψ
i
b)(∂

m
a f(λ)) = 0 , (E.4)

∆ψia = ψia

{
−
∑
j 6=i

Uij

}
, (E.5)

Uij ≡
λ2
i + λ2

j

(λ2
i − λ2

j )
2
. (E.6)

The flat matrix connections T were introduced in (4.7) and App. A:

(Tma )ij = (ψib∂
m
a ψ

j
b) = (1− δij)φmb

ψibψ
j
a + ψiaψ

j
b

λ2
j − λ2

i

, (E.7)

∂ma (Tma )ij = 0 , (E.8)

(Tma )ij(∂
m
a f(λ)) = 0 , (E.9)

(Tma )ij(T
m
a )kl = (1− δij)(δikδjl − δilδjk)Uij . (E.10)
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The gauge-invariant matrices Γi are defined in (4.6). They are real, symmetric,

traceless, anticommuting and satisfy (Γi)
2 = 1:

∂ma Γi =
Γn

λi

(
δnmψ

i
a − φnb φmc ψibψic

ψia
λ2
i

+ φnb φ
m
c

∑
j 6=i

ψjb
ψicψ

j
a + ψiaψ

j
c

λ2
i − λ2

j

)
,

(E.11)

∆Γi = Γi

(
− d− g

λ2
i

−
∑
j 6=i

Uij

)
, (E.12)

∂ma (Γi∂
m
a Γi) = 0 (no sum on i) , (E.13)

(∂ma Γi)(∂
m
a f(λ)) = 0 , (E.14)

(Tma )ij(∂
m
a Γk) = (1− δij)

2λk
(λ2
i − λ2

j)
2

(δkjλiΓi − δkiλjΓj) , (E.15)

(∂ma Γi)αβ(∂ma Γj)γδ = δij

[
(Γm)αβ(Γm)γδ −

∑
k(Γk)αβ(Γk)γδ

λ2
i

+
∑
k 6=i

Uik(Γk)αβ(Γk)γδ

]
− (1− δij)Uij(Γj)αβ(Γi)γδ , (E.16)

∆(ΓiΓj) = (1− δij)ΓiΓj

(
−d− g

λ2
i

−
∑
k 6=i

Uik −
d− g
λ2
j

−
∑
k 6=j

Ujk + 2Uij

)
.

(E.17)

In the case of SU(2), the special gauge-invariant matrix

Θ = −iΓ1Γ2Γ3 = − i
6
εabcΓ

mΓnΓp
φma φ

n
b φ

p
c

λ1λ2λ3
(E.18)

is imaginary, antisymmetric, traceless, has square equal to the unit matrix, and

commutes with the matrices Γi:

φma ∂
m
b Θ = 0 , (E.19)

∆Θ = Θ

[
− (d− 3)

∑
i

1

λ2
i

]
, (E.20)

∂ma (Θ∂ma Θ) = 0 . (E.21)

Appendix F. Integrals

When we average over the fast variables λ1 and λ2 with the Gaussian function

(2.18a), the following class of two-dimensional integrals occurs:∫ ∞
0

ds

∫ s

0

dt(s2 − t2)(st)M (s2 + t2)N exp(−s2 − t2) =
(N +M + 1)!

(M + 1)2M+2
. (F.1)
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This formula gives us useful averages for our asymptotic calculation. Using the

notation

〈f(λ1, λ2)〉 =

∫
d2λσ∞|uR|2

f(λ1, λ2)∫
d2λσ∞|uR|2

(F.2)

[see Eq. (2.21) and set ~ = g = 1] we find, for general values of d, that

〈λ2
1 + λ2

2〉 =
d− 1

R
, (F.3)

〈(λ2
1 + λ2

2)2〉 =
d(d− 1)

R2
, (F.4)

〈λ1λ2〉 =
d− 2

2R
, (F.5)

〈λ2
1λ

2
2〉 =

(d− 1)(d− 2)

4R2
, (F.6)

where d = 9 for matrix theory.

Appendix G. Gauge-Invariant Angular Variables

Here we will express the bosonic Laplacian in terms of the complete set (λi, η
m
i )

of gauge-invariant variables, regarding the λ’s and η’s respectively as radial and

angular variables. The result can be arranged in several ways and the one shown

below has particular advantages for our work.

We start, as in App. B, with the gauge-invariant bosonic variables

φmi ≡ ψiaφma (G.1)

and the Lie derivatives (which do not act on the gauge-invariant fermions)

iπ′mi = Dm
i ≡ ψia∂ma = ψia

∂

∂φma
, (G.2)

so that the Laplacian can be written as

∆ = Dm
i D

m
i + (∂ma ψ

j
a)D

m
j = Dm

i D
m
i −

∑
i6=j

yijφ
m
j D

m
j . (G.3)

Here we have made use of (E.2) and

yij ≡
1

λ2
i − λ2

j

. (G.4)

The formula

Dm
i φ

n
j = δij

[
δmn +

∑
k 6=i

yikφ
m
k φ

n
k

]
− (1− δij)yijφmj φni (G.5)

also follows from results in App. E and will be used below.
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Next, we write the orbital angular momentum operator Mmn in terms of these

new derivatives,

Mmn = −i[φma ∂na − φna∂ma ] =
∑
i

Mmn
i , (G.6a)

Mmn
i ≡ −i[φmi Dn

i − φni Dm
i ] , (G.6b)

and note that the operatorsMmn
i are Hermitian in the measure (dφ), although their

algebra is not simple. Now calculate the trace of the square of each Mi:

M2
i = −

∑
m<n

[φmi D
n
i − φni Dm

i ]2 (G.7a)

= −λ2
i (D

n
i )2 + (φmi D

m
i )2 +

[
d− 2 +

∑
k 6=i

yikλ
2
k

]
φmi D

m
i . (G.7b)

Combining this result with Eq. (G.3) for the Laplacian, we find that

∆ =
1

λ2
i

{
(φmi D

m
i )2 −M2

i +

[
d− 2 +

∑
j 6=i

yij(λ
2
i + λ2

j)

]
φmi D

m
i

}
, (G.8)

and then noting that

φmi D
m
i = λi

∂

∂λi
(no sum on i) (G.9)

we can simplify this formula to the nice form

∆ = ∆λ + ∆η , (G.10a)

∆η = −
∑
i

M2
i

λ2
i

. (G.10b)

Here ∆λ, which contains the λ derivatives, is as given earlier in Eq. (E.3) and we will

see that ∆η, which is negative semidefinite, contains only derivatives with respect

to the angular variables η,

ηmi ≡
φmi
λi

, (G.11)

which complement the radial variables λ.

For any function f(λ, η), the chain rule gives

Dm
i f = ηmi

∂

∂λi
f + (Dm

i η
n
j )∂nj f , (G.12a)

Dm
i η

n
j =

δij

λi

[
δmn −

∑
k

ηmk η
n
k +

∑
k 6=i

yikλ
2
i η
m
k η

n
k

]
− (1− δij)yijλiηmj ηni , (G.12b)
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where we have defined the η derivative,

∂mi ≡
∂

∂ηmi
, ∂mi η

n
j = δmnδij , (G.13)

and (G.12b) is closely related to (E.11).

Using (G.12), we re-express the operators Mmn
i in terms of the variables λ and

η. As expected, all ∂
∂λi

terms cancel out and we find that

Mmn
i = Lmni + i

∑
j 6=i

η
[m
i η

n]
j {xij(ηi∂j) + xji(ηj∂i)} , (G.14a)

Lmni ≡ −iη[m
i ∂

n]
i , (G.14b)

where Lmni is the naive angular momentum operator for the η variables and

xij ≡
λ2
i

λ2
i − λ2

j

, (ηi∂j) ≡ ηmi ∂mj . (G.15)

Using the naive η derivative in (G.13), it is not difficult to check that the operators

Mi in (G.14) respect the η constraints,

Mmn
i (ηpj η

p
k) = 0 , (G.16)

and it follows directly that the operators Mmn
i are Hermitian in the gauge-invariant

measure d3λ(d3η) [see (7.4)]. Taken with (G.14), the form of the Laplacian in (G.10)

is the central result of this appendix.

For the discussion below, we will also need the form of the operators Mi,

Mmn
3 = Lmn3 + i

∑
j=1,2

η
[m
3 η

n]
j (η3∂j) + · · · , (G.17a)

Mmn
1 = −i{η[m

1 ∂
n]
1 − η

[m
1 η

n]
2 [x21(η2∂1) + x12(η1∂2)]

+ η
[m
1 η

n]
3 (η3∂1)}+ i

(
λ2

1

R2

)
η

[m
1 η

n]
3 (η[3∂1]) + · · · , (G.17b)

Mmn
2 = −i{η[m

2 ∂
n]
2 − η

[m
2 η

n]
1 [x12(η1∂2) + x21(η2∂1)]

+ η
[m
2 η

n]
3 (η3∂2)}+ i

(
λ2

2

R2

)
η

[m
2 η

n]
3 (η[3∂2]) + · · · , (G.17c)

in the asymptotic region, R = λ3 � λ1, λ2 = O(R−
1
2 ). The extra term (7.14) of

the second computation in the text,

Mmn
3 f(η3) = Lmn3 f(η3) + O(R−1) , (G.18a)

−1

2
∆f(η3) =

[
L2

3

2R2
+O(R−3)

]
f(η3) , (G.18b)

follows immediately from the asymptotic form of M3 in (G.17), the M1,2 terms

failing to contribute at this order.
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In what follows, we will use the results above to outline a strategy for proving

the following conjecture:

(a) The eigenvalues ε of the bosonic operator H0 in (2.17) satisfy

ε ≥ (d− 1)R = 8R (G.19)

and uR in (2.18) is the only state which realizes the minimum.

(b) The eigenvalues of the bosonic operator

H ′0 = H0 +
M2

1

2λ2
1

+
M2

2

2λ2
2

(G.20)

also satisfy ε ≥ (d − 1)R = 8R and uR is the only state which realizes the

minimum. Here M1,2 are given by their leading (first four) terms in (G.17b)

and (G.17c).

The operator H0 is the dominant part (i.e. it contains all terms of order R) of the

bosonic Hamiltonian in the gauge- and rotation-invariant sector; it contains only the

fast derivatives ∂
∂λ1,2

with the slow variable R = λ3 as a parameter. The operator

H ′0 is the dominant part (in the same sense) of the full bosonic Hamiltonian HB at

large R, including the gauge-invariant angular excitations; it involves only the fast

derivatives ∂
∂λ1,2

and ∂
∂η1,2

, with the slow variables R = λ3 and η3 as parameters.

If true, this conjecture implies that our η1, η2-independent projector state |·〉 in

(7.3) is the only state whose associated effective Hamiltonian (including −8R from

the fermions) has no linear term in R.

There is strong evidence for (a), though we have not tried to prove it: it is

straightforward to find a large class of radial eigenfunctions um,n(λ1, λ2) of H0 (or

H ′0) with

ε = R[d− 1 + 2(m+ n)] , m, n = 0, 1, 2, . . . , (G.21)

where u0,0 = uR. Assuming (a), we can prove (b) as follows. The positive semidef-

inite operators M2
i /λ

2
i , i = 1, 2, can only give additional positive semidefinite con-

tributions to ε, beyond (d− 1)R. So, to prove (b), we only need to show that there

are no nonconstant solutions to the differential equations

Mmn
i v(η1, η2) = 0 , i = 1, 2 , ∀mn , (G.22)

where the M ’s are given by their leading terms at large R. We have explicitly

checked that this is true.
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