# Numerical integration in many dimensions. III 

Charles Schwartz<br>Department of Physics, University of California, Berkeley, California 94720

(Received 3 June 1985; accepted for publication 27 September 1985)
Extending a previous line of work, a powerful computational method is found for numerical integration in many dimensions of functions of the form $F\left(f_{1}\left(x_{1}, x_{2}\right)+f_{2}\left(x_{2}, x_{3}\right)+f_{3}\left(x_{3}, x_{4}\right)\right.$ $\left.+\cdots+f_{d}\left(x_{d}, x_{1}\right)\right)$.

## I. INTRODUCTION

In a previous paper ${ }^{1}$ a method for fast and accurate machine computation of $d$-dimensional integrals, where the integrand was of the form $F\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{d}\left(x_{d}\right)\right)$ was presented. The first step was to introduce an integral transform representation of the function $F$ so that its argument appeared in an exponential, then each of the $d$ integrations over the coordinates $x_{i}$ could be done separately, with the final product then numerically integrated over the transform variable. If $n$ lattice points were needed for the adequate numerical evaluation of each one-dimensional integral, then this method would require of the order of $n^{2} d$ operations: This is enormously better than the $n^{d}$ operations that would be required in a direct integration method. Now this method of approach is extended to a more complicated integrand, in which the argument of the general function $F$ has the coordinates $\boldsymbol{x}_{\boldsymbol{i}}$ linked together in a chain.

## II. THE METHOD

Consider the integral over the $d$-dimensional product space

$$
\begin{equation*}
I=\left(\prod_{i=1}^{d} \int g_{i}\left(x_{i}\right) d x_{i}\right) F\left(\sum_{i=1}^{d} f_{i}\left(x_{i}, x_{i+1}\right)\right) \tag{1}
\end{equation*}
$$

where $x_{d+1}=x_{1}$. Start, as before, with some integral transform

$$
\begin{equation*}
F(s)=\int d \sigma \hat{F}(\sigma) e^{s u(\sigma)} \tag{2}
\end{equation*}
$$

where the integration takes place along some suitable contour. Then we have

$$
\begin{equation*}
I=\int d \sigma \widehat{F}(\sigma) J(\sigma) \tag{3}
\end{equation*}
$$

where
$J(\sigma)=\left(\prod_{i=1}^{d} \int g_{i}\left(x_{i}\right) d x_{i}\right) \exp \left(u(\sigma) \sum_{i=1}^{d} f_{i}\left(x_{i}, x_{i+1}\right)\right)$.
Now introduce the numerical quadrature rule of choice for each $x_{i}$ :

$$
\begin{equation*}
\int h(x) d x \cong \sum_{j=1}^{n} w_{j} h\left(z_{j}\right) \tag{5}
\end{equation*}
$$

We assume, only for simplicity of notation, that we use the
same quadrature rule (points $z_{j}$ and weights $w_{j}$ ) for each $x_{i}$ integration variable.

Now comes the coup. Notice, that with the definition

$$
\begin{equation*}
A_{j j^{\prime}}^{i}(\sigma)=w_{j} g_{i}\left(z_{j}\right) \exp \left[u(\sigma) f_{i}\left(z_{j}, z_{j}\right)\right], \tag{6}
\end{equation*}
$$

we can write the multiple integration in terms of the matrices $A^{i}$ :

$$
\begin{equation*}
J(\sigma)=\operatorname{Trace} A^{1}(\sigma) A^{2}(\sigma) \cdots A^{d}(\sigma) \tag{7}
\end{equation*}
$$

There are $n^{2}$ elements in each of $d$ matrices, and these must be evaluated for each of $n$ values of $\sigma$. The multiplication of two matrices requires $n^{3}$ multiplications of numbers. Therefore the total amount of computer time for this method is of the order of $n^{3} d$ function evaluations plus $n^{4} d$ additional multiplications. For $n$ of the order of 10 , this means that we can evaluate integrals with $d$ into the hundreds or more for pennies.

Once again, a problem that seemed to increase exponentially with the number of dimensions has been reduced to a procedure that increases only linearly. The choice of the integral transform is of course important, and the reader is referred to Ref. 1, where several examples are given.

## III. FURTHER COMMENTS

If the entire integrand is symmetric in all variables (all functions $f_{i}$ and $g_{i}$ given by a single $f$ and $g$ ), then there is only a single matrix $A$; and then

$$
\begin{equation*}
J=\sum_{j=1}^{n}\left(\lambda_{j}\right)^{d}, \tag{8}
\end{equation*}
$$

where the $\lambda_{j}$ are the eigenvalues of the matrix $A$ (for each value of $\sigma$ ). Thus we can even take the limit as $d$ goes to infinity, with the answer given in terms of the largest eigenvalue of $A$.

If the structure of the integrand is that of an open chain [i.e., if the function $f_{d}\left(x_{d}, x_{1}\right)$ is absent in (1)], then the problem is simplified a bit. The work of multiplying the matrices is reduced by a factor of $n$.

The technique used here for handling the multiple sum over chain-linked variables leads to the study of some wellknown problems in statistical mechanics. I have applied this approach to the Ising model in one, two, and three dimensions; and these results will be published separately.
${ }^{1}$ C. Schwartz, J. Math. Phys. 26, 951 (1985).

