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Two new techniques are presented that appear to be useful in obtaining accurate numerical values 
for the numerical integration offairly smooth functions in many dimensions. Both methods start 
with the idea of a mesh containing n points laid out in each of the d dimensions, then seek 
strategies that use far less than all nd points in some systematically improved sequence of 
approximations. 

I. EXTRAPOLATION METHOD 

Suppose we have some prescription for the numerical 
integration of a functionf(x) of one variable: 

n Ib j~lWj'(Xj) = af(x)dx+E(n). (1) 

A high-accuracy prescription (quadrature rule) is the set of 
points Xj and weights Wj such that the error E (n) is a small 
and rapidly decreasing function of n, the number of mesh 
points used. 

Now suppose we want to integrate a function 
F(X l ,x2'''''Xd) = F(x) over the d-dimensional cube. The di
rect product technique would be to use the rule (1) d timesi 

". n2 "d L L '" L Wj, Wh ... wjdF (Xj" Xjz ,,,,,Xjd ) 
j, = 1 h = 1 jd = 1 

(2) 

This computation will require a large amount of effort, since 
the total number of evaluations involved is 

d 

N= IIn j • (3) 
j=l 

To see the form of the error, apply the relation (1) d times to 
F(x): 

S (n) = f r .. f ddX F (x) + [El (nl ) + E2 (n2) + ... + Ed (nd)] + higher-order terms, (4) 

where the higher-order terms would be of the form of pro
ducts of two or more "small" terms. This is the main result: 
If the errors are indeed small in each separate dimension, the 
leading (first-order) error term for the multidimensional 
computation is additive in contribution from each dimen
sion. 

Upon this observation we build a simple technique for 
eliminating the first-order errors. First, compute S for a giv
en set of numbers nj; then, one at a time, increase the number 
of mesh points used in a single dimension while keeping all 
the others fixed, and compute 

Dj==S (n l , n2, .. ·,nO ... ,nd ) - S (n l , n2, ... ,n'l , ... ,nd ), 
i = 1, d. (5) 

Then, from (4), we have 

Dj~Ej (nj) - E j (n;); (6) 

and, if n; is substantially larger than nj , we may take 

Dj-:::;Ej (n j ), (7) 

because each E (n) is assumed to decrease very rapidly as n 
increases. Thus we computationally determine the first-or
der error terms and we subtract these terms out from the 
original computation to get the improved approximation for 
the integral/of F (x): 

d 

/-:::;S(n) - LDj • (8) 
j=l 

The saving in computer time by this technique may be con-

siderable: If No is the number of evaluations needed to com
pute the original S (n), and if we take each n; = 2n j , then the 
additional computing effort for the result (8) is UNo; this 
may be compared to 2d No which is the amount of effort 
needed if one doubled all the nj at once. 

This result is an extension of the basic idea in Richard
son extrapolation, except that we do not assert a known form 
for the error function E (n) but only rely upon it being rapidly 
decreasing. 

For numerical examples I took two six-dimensional in
tegrals of complicated form from the book by Davis and 
Rabinowitz l

: 

Fl = xlxzX~4xsX6[log(xlxzX3/x4xsx6)]2, 

integrated over the cube (0,1)6, 

F2 = i4cos ( 3x lXzX~4XS (1 - X6) + !) 
integrated over the cube ( - 1,1)6. 

(9a) 

(9b) 

The points Xj and weights Wj used were those tabulated for 
Gauss-Legendre numerical quadrature. 

Computed results are displayed in Table I. The column 
headed "Mesh" gives the set of numbers nj used for the origi
nalS (n) (26,36

, etc.) in each block, followed by the increment
al sets (nd 

- 1 n') used. The column headed "Number" counts 
the number of function evaluations needed at each stage of 
the computation. (In the actual work these numbers were 
much reduced because of the permutation symmetry of the 
integrands, but that is not a general feature of the present 
method.) The columns headed "Error" give the fractional 
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TABLE I. Numerical results for the six-dimensional integrals (9al and (9bl 
using Gauss-Legendre quadrature rules plus the extrapolation technique 
(8). 

Mesh Error-F, 

2" 0.16 
2'4 0.028 
2'6 0.0085 
2'8 0.0040 
2'10 0.0024 

3" 0.060 
3'6 0.0076 
3'8 0.0031 
3'10 0.0015 

4" 0.028 
4'6 0.0077 
4'8 0.0030 
4'10 0.0014 

5" 0.014 
5'8 

6" 0.0076a 

8" 0.0031a 

Number 

64 
768 

1 152 
1536 
1920 

729 
8736 

11664 
14580 

4096 
36864 
49152 
61440 

15625 
25000 

46656 

262144 

Error - F2 

0.0029 
0.0021 

0.000 27 
0.000 064 

0.000014 
0.000000 81 
0.000000 83 

0.000 000 56 . 
0.000 000 006 9 

0.000 000 01 a 

a From R. Cranley and T. N. L. Patterson, Numer. Math. 16, 70 (19701. 

error in the numerical value of the integral (for the functions 
Fl and F2) computed. 

Looking first at the results for the function F I , we see 
that overall the error is not very small and decreases rather 
slowly: for example, look only at the sequence n6

• This is 
doubtless due to the logarithmic singularity in the integrand, 
something which the chosen quadrature rule is ill prepared 
to accommodate. Yet, given that overall difficulty, the pres
ent scheme is seen to be very successful at getting higher 
accuracy with fewer number of mesh points used: compare 
the accuracy at 25 10 (1,920 + 64 mesh points) with that at 86 

(262,144 mesh points.) There is a cost saving here of two 
orders of magnitude for the same result. 

When we turn to the results for F2 things are different. 
The overall accuracy is better and the convergence more 
rapid. This may be attributed to the analytic character of the 
function F2 • The improvements gained by the present extra
polation technique start out as nil (in the topmost block) but 
then increase rapidly, reaching almost two orders of accura
cy improvement (in the fourth block) at a cost of less than 
twice the starting number of mesh points. 

I do not have a generai theory to predict when this tech
nique will work well or how best to implement it strategical
ly. It does appear to be quite promising, however, as a tech
nique which one can readily experiment with, using 
systematic increases in the numbers n to show whether the 
convergence seems to be good or poor. 

II. FACTORIZATION METHOD 

Suppose the function F(x) were given as a product of 
factors, each involving only a single coordinate, 

J. (Xl)h (X2 )"1d (Xd); (10) 

then the d-dimensional integral of F would be simply the 
product of d one-dimensional integrals, each one of which 
could be evaluated by some numerical quadrature rule such 
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as ( 1). The total cost would be proportional to nd rather than 
the much larger number nd

• 

Suppose that F(x) may be well approximated by a fac
torized form (10) but the individual functions/; (x;) are not 
known. Then one may construct these functions as follows. 
Choose some reference point (node) y = (vI' Y2, ... ,yd)' such 
that F (y) is nonzero. Now tabulate the values of F walking 
out from this node along each one of the coordinate axes: 

/; (Xj) =F (YI'Y2, ... ,y;-I,xj'Y;+ I, ... ,yd )/F(y), 
j= 1, n, (11) 

where we have chosen a normalization for the factor func
tions /; such that they are equal to 1 at the node, and the 
points Xj would be chosen to fit the quadrature rule (1) being 
used. We have thus constructed the aproximation 

d 

F (x) zG (x) = F (y) II/; (x;), (12) 
;=1 

and the integration follows easily. 
Now, to develop a generally useful method, we need to 

invent a sequence of approximations, like (12), such that we 
may approach closer and closer to the given function F. 
From the discussion above it is clear that we have the free
dom of choice of the node point y from which the construc
tion (11) follows. 

A first strategy is to take a sequence of nodes y k, k = 1, 
2, 3, ... , and then construct a sequence of product functions 
Gk(x), defined by (11) and (12), where GI is built from the 
original function F, G2 is built from the residual function 
F - GI, G3 is built from F - GI - G2, etc. This procedure 
was tried on the two six-dimensional integrals (9a) and (9b); 
the results were very poor. Probably what is happening is 
this: At the k th stage one is fitting exactly at the point y k and 
on the lines passing through this point but at the same time 
one is messing up the fit achieved at the previous node points 
and their lines. Thus the error can just bounce around from 
one region to another without being reduced. 

A second strategy involved constructing a set of ap
proximations Gk (x), each constructed to fit the original func
tion F (x) at the point y k , independent of the others 

d 

Gk(x) =F(Yk) IIf7(x;},k= 1,2, .... (13) 
i=1 

Then take a linear combination of these Gk to minimize the 
expression 

(14) 

This was also tried on the same two functions (9a) and (9b) for 
five points; and the results were even worse than with the 
first strategy. 

A third strategy involved a more complicated "cluster 
decomposition": 

F(x) =F(y)II/;(x;) + LH~,~12(x;"X;2) 
i il <;2 

x II hPl(x;) + .... (15) 
;':;1=;1';1' ;3 
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Here only a single node point y is used; the functions H (2), 
H (3), etc., span larger-dimensional subspaces and are defined 
to vanish when any of their arguments are on the lines pass
ing through y. This method was tried, through third order, 
on the same two functions (9a) and (9b) and the results were 
unsatisfactory once again. 

A fourth strategy works the other way: rather than 
building up correlations between the coordinates from the 
uncorrelated product (10), we start by taking the full d-di
mensional space and decomposing it into a product of two 
subspaces 

x = (xp x2), (16) 

where d l (the dimension of Xl) and d2 (the dimension ofx2) 
add up to d. The original function F is represented by 

F(x) = F (Xl ,X2) = LG~(xdG~(X2)' (17) 
k 

This arrangement has a special property, which was first 
noticed to be true in the first strategy above only for the case 
d = 2. There is a freedom of redefinition of the functions G 
which leaves F unchanged: 

G~-G~ +AGr, G~'-G~' -AG~, (18) 

for any number A. With this, one can choose a series of node 
points 

yk= (y~,y~), 

and require 

G ~. (y~) = G r (y~) = 0, for all k I > k. (19) 

This means that we can carry out the sequential fitting de
scribed as the "first strategy" to evaluate the functions Gk 

[Eq. (17)]. The new advantage, from (19), is the fact that 
fitting at the k th node yk will not disturb the previous fittings 
obtained at other nodes. The price paid for this advantage is 
that each G function must be evaluated at a large number of 
points. Still, the total number of evaluations, nd

, + nd>, for 
each point yk can be significantly less than the full number of 
mesh points nd

• + d2
• Some experiments were carried out us

ing this method. The function (9a) yielded very good results 
after three node points; the function (9b) gave only fair re-
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suIts with up to six node points. A chief advantage of this 
method appears to be that the results tend to converge rela
tively smoothly; while the previous strategies would often 
give results that jumped around irregulary. 

Obviously, the approach of this fourth strategy could be 
carried further: each subspace Xl and x2 could be subdivided 
into smaller subspaces with consequent savings in the num
ber of evaluations needed. 

It is not clear to me when these various strategies will 
work well and when they will fail. What are the characteris
tics of the function Fwhich suggest that one or another tech
nique will be most successful? What is the best way to choose 
a sequence of node points yk? Per haps some later analysis or 
accumulation of experience may shed light on these ques
tions. For the present I believe it is useful to have a variety of 
strategies which one may simply try out when an expensive 
multidimensional integral confronts one. 

III. SUMMARY 

Two new methods have been presented for trying to 
deal with multidimensional integrals in systematic manners 
that allow one to judge the accuracy in terms of experimental 
observations of how the computer outputs converge. The 
first method is based upon a simple analysis of the error 
terms when high-accuracy numerical quadrature rules are 
used. The second method has a geometric conception, with 
the function being fitted along sets of lines passing through 
selected node points in the multidimensional space. Several 
strategies within this second method have been described, 
with a success rate (at least for the rather difficult test prob
lems studied here) that calls for considerable further work 
before one would be tempted to market this second method. 
The numerical success of the first method, on the other 
hand, is quite encouraging; and the first method is, further
more, simpler to understand and to implement. 

'P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Aca
demic, New York, 1975). Chapter 5 deals with multidimensional integrals. 
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