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A generalization of the familiar mesh point technique for numerical approximation offunctions is 
presented. High accuracy and very rapid convergence may be obtained by thoughtful choice of 
the reference function chosen for interpolation between the mesh points. In particular, derivative 
operators are represented by highly nonlocal matrices; but this is no drawback when one has' 
computing machines to perform the algebraic manipulations. Some examples are given from 
familiar quantum mechanical problems. 

I. INTRODUCTION 

The most common approach to numerical approxima­
tion of continuous functions involves the representation of 
the functionf(x) by its values on a set of mesh (net, or lattice) 
points x". Familiar formulas for the derivative, in the simple 
case of a uniform mesh x" = Xo + nh, are 

f'(x,,) = [fIx,,) - f(x,,_ d]/h + O(h), 

or 

f'(x,,) = [/(x" + d - /(x,,_11]/2h + O(h 2), 

and for the integral [writing/Ix,,) =/,,] 

[
N /(x)dx = (xN -xo)~ fin + hlfo -/N) + O(h2). 

"0 N,,=I 2 

These are simple to derive and simple to use but they have a 
very low order of accuracy in general. This is due to the fact 
that only local information about the function / is used in 
building the approximation. 

The approach presented in this paper is based upon a 
global construction of an approximation for fIx), which is 
still flexible and easy to use and involves only the ValUes/II at 
the selected mesh points. The purpose is to achieve very 
high-accuracy approximations: with a total of N mesh points 
it is nice to get errors which are as small as A - N (or even 1/ 
N I), rather than the 1/N, 1/ N 2, etc., errors which are charac­
teristic of the usual methods. In this sense the present ap­
proach is somewhat reminiscent of Gaussian quadrature; 
but it is rather more general in its construction and its appli­
cation. The present method may also be described as a gener­
alization of Lagrange interpolation; and the method of "col­
location" is also related. 

The general method will be described, along with a for­
mal method for error analysis; then several examples will be 
given, mostly concerned with solving differential equations 
familiar in quantum mechanics. 

II. THE GENERAL METHOD 

To approximate a given function/Ix) we start by choos­
ing a reference function u(x) that has simple zeros at the (real) 
points x = x". The construction of an interpolating function 
fIx) to approximate/Ix) is 

- u~ 1 , 
/(x)_ai'L/ '" -, where a" = u (x,,). (1) 

'" x-x", a", 
Atthepointsx = x".l(x) takes on the values/" =/(x,,). We 
should choose the reference function u(x) to have analytic 

properties similar to those of the desired function/Ix); the 
error analysis and examples to follow will help show what 
this means. 

To approximate the derivatives of the function /, we 
take derivatives of the interpolating function ( 1), evaluated at 
themeshpointsx". The resulting formulas are [b" = u"(x,,) 
and c" = u'"'(x,,)] 

m=n: 

dfl =l:J~ 
dx ". "', 

(2) 

'" 
m¥=n: 

d'il = I-/ 1m 

=n: ;;" 
dx

2 
"'. '" m m¥=n: 1 b" _ 2 a" 

(x" -x",) a", (x" -X",)2 am 

(3) 

In case the function u(x) obeys an equation of the form 
u"(x) = W(x)u(x), then there is a simplification of the above 
formulas: b" = 0, c" = W"a,,; and the matrices representing 
the derivative operators can be put into a symmetric form. 

To approximate the integrals of/we get the formulas 

L"·f(X)dX = I- QI(n, mV'm' 
"0 '" 

(4) 

L
"· u(x)(x - x) 

where Q2(n, m) = dx " . 
"0 a", (x - x"') 

(5) 

In the case where u(x) is an orthogonal polynomial times a 
weight function and the integral is taken over the entire do­
main, then (4) yields the usual Gaussian quadrature results. 

The above general method is very flexible since one can 
choose any reference function u(x). The quantities that enter 
into the matrices for the derivative operators (D ) or integral 
operators (Q) may be determined by some computational 
procedure, ifnot readily expressed in closed form, depending 
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on this choice of u. A practical question is the following: 
Does one pay a heavy price by having the derivative operator 
so nonlocal, since one may be forced to invert or otherwise 
manipulate these matrices in order to solve differential equa­
tions? A computing machine can readily carry out such ma­
trix operations numerically for moderate-sized matrices. 
Furthermore, when one gets into partial differential equa­
tions the usual mesh point methods already require working 
with sizable matrices for the derivative operators. Since the 
whole point of the present method is to construct approxi­
mate but accurate functions]in terms of a small number of 
mesh points it is anticipated that the net result should be a 
general increase in efficiency of computation. 

Now we present a general approach for analyzing the 
error in approximating the functionfby], once u is chosen. 
Assume that bothf(x) and u(x) are analytic functions in some 
appreciable domain of the complex plane surrounding the 
set of mesh points x". Then, using the contour around z = x 
[see Fig. I(a)) we have the identity 

f(x) = i dz. f(z) u(x). (6) 
j 2m z - x u(z) 

One may take the point x to be slightly off the real axis to be 
assured that there is no difficulty in this integral representa­
tion when x approaches one of the mesh points x,,, where u 
vanishes. Now move the contour of integration to the large 
loop C and the small circles around each of the points z = x" 
[see Fig. I(b)). Calculating the residues at each x" we have 
the exact result 

f(x) = Lf(x,,) u(x) , I + E. 
" (x -x,,) u (x,,) 

(7) 

The first term on the right-hand side of (7) is just the approxi­
mation](x) defined in (I); the second term E is the error and is 
given by the integral over the contour C of the expression (6). 
A general argument about the smallness of this error is as 
follows: Since u(z) has many oscillations along the real axis, 
one expects it to grow rapidly along the imaginary directions 
in the z plane; and it is this factor in the denominator that 
should make the error E decrease rapidly as the mesh points 
become more closely spaced. A concrete example will be 
studied in the next section. 

z plane 

(oj 

z plane 

(bl 

FIG. 1. Integration contours for error analysis. The several crosses X rep­
resent the mesh points )c •• The solid dots. represent the point z = )C. 
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III. EXAMPLE I 

Consider the infinite line, - 00 < x < 00, and the choice 
of a uniform sequence of mesh points: 
x" = nh, n = 0, ± I, ± 2, ± 3, .... Then we take the refer­
ence function u(x) = sin 11'x/h; and the matrices for d /dx 
and d 2/ dx2 become 

I {n = m: 0, 
D (n, m) = - (8) 

1 h n#m: (-l)"-m/(n-m); 

__ I_{n = m: - ~/3, 9 
D2(n,m)- h 2 n#m: _2(_I),,-m/(n_m)2. () 

The matrices for the indefinite integrals become 

QI(n, m) = (h /11') [Si((n - m)11') + 11'/2], (10) 

Q2(n, m) = (h 2/~)[(n - m)1T(Si((n - m)11') 

+ 11'/2) + (- l),,-m), (11) 

where 

Lx sin t 
Si(X)= dt-. 

o t 
(12) 

The only familiar result contained here is for the infinite 
integral 

QI( - 00, (0) = h, f: oof(x)dx = ,,=~ 00 hf(nh) + E. 

(13) 

The high accuracy of the trapezoidal rule for the infinite 
integration of analytic functions has been explored else­
where. 1 This is the "Gaussian quadrature" formula for the 
infinite line. 

Obviously, if this approach is to be practical, we should 
be dealing with functionsf(x) which decrease very rapidly as 
x grows large, so that the infinite sums over the mesh points 
can be truncated effectively. Thus we have two sources of 
error to analyze: E,A from (7) due to the analytic approxima­
tion and E T due to the truncation. A good strategy will be to 
choose a relation between the mesh spacing h and the trunca­
tion at In I < N so that E,A and ET are approximately equal to 
each other. This will avoid wasting effort on too small a mesh 
(when truncation error dominates) or on too large a cutoff 
(when mesh error dominates). 

For illustration, consider that the function f(x) is 
known to be analytic everywhere in the finite complex plane 
and is dominated at large distances by the behavior 

e-axP. (14) 

Then we have 

(IS) 

For the mesh size error, we see that the error in (7) involves 
the integral over the large contour C in Fig. l(b); and with 
u(z) = sin m/h, we see that this error is given roughly by 

E,A::::: f dze±f1TZ/h e-azP. (16) 

This integral may be estimated by the stationary phase meth­
od (we are interested in the dependence of E,A on h forsmall h ) 
and we find 

E,A :::::e- bh -', where q = p/(P - 1), (17) 
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and 

b = (11")l/(P-ll(c.!.) sin[1r 1 ]. 
ap p 2(P - 1) 

Equating the results (15) and (17) we find the optimum 
choice of h, given N, 

h = (b laNP)((P-IVP\ (IS) 

and along with this is the error estimate 

(19) 

where 

C = b (alb )l/p. 

This result--exponential decrease of the error with increas­
ing number of mesh points-is most exciting. Rather than 
trying to make this rough error analysis more respectable I 
shall proceed to some numerical experiments. 

The one-dimensional Schrodinger equation 

- - - + - Xk tP(x) = EtP(x), ( 
1 d

2 
1 ) 

2 dx2 k 
(20) 

for k = 2,4, ... , is an eigenvalue problem in which the solution 
tP(x) has the characteristics described above: it is an analytic 
function for all finite x and has the asymptotic behavior for 
large x given by (14) with 

p=k;2, a= k!2(~rl2. (21) 

Thus we predict the optimum convergence strategy, (IS) and 
(19): 

h = (1rIN)I/2, E-;:::::,e-1. 57N, for k = 2, (22) 

and 

h = 1.7SN-2 / 3, E-;:::::,e-1.32N, for k = 4. (23) 
Taking account of the symmetry, tP(x) = ± tP( - x), and 
choosing the mesh points xn = (n - 1I2)h, 
for n = 1,2, ... ,N, and using (9) for the second derivative op­
erator, Eq. (20) was represented as an N X N matrix eigenval­
ue problem which the computer solved for the sequence 
N= 1,2,3, .... 

The values of h were chosen according to (22) and (23) 
with (N + 112) replacing N. The numerical results for the 
ground state eigenvalue showed very rapid convergence: 

k=2,E=0.5: 

N = 1 error 7x 10-2
, N = 2 error 3X 10-3

, 

N = 3 error 2x 10-4
, N = 4 error 1 X 10-5

, 

with a good fit to the formula E-;:::::, e - 2.9N; (24) 

k = 4, E = 0.420 S04 974 475: 

errors of - 7x 10-2, 6x 10-3, 2x 10-4, 

7x 10-6 for N = 1,2,3,4, 

with a good fit to the formula E -;:::::, e - 2.8N. (25) 

These are very gratifying results: high accuracy at low-order 
approximation with very rapid improvement as the order of 
approximation is increased. Indeed, these numerical results 
for the X4 potential converge even more rapidly than the 
results of a Rayleigh-Ritz variational calculation that used a 
harmonic oscillator basis.2 The predicted exponential form 
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of convergence (19) was well borne out by the numerical 
results; however, there is some discrepancy between the pre­
dicted and observed values of the decay constant C. The 
decay constants in (22) and (23) describe the error in the wave 
function and perhaps one ought to square these errors for the 
eigenvalue: the values 2C = 3.14 (k = 2) and 2C = 2.64 
(k = 4) are not so far from the observed results 2.9 and 2.S, 
respectively. 

In the computations described above the matrix eigen­
value was determined by a direct numerical method (which 
requires computing time proportional to the cube of the di­
mension of the matrix). For these one-dimensional problems 
the size of the matrix is so small that this is no problem. 
However, when one envisions going to multidimensional 
problems with a much larger dimension for the matrix of the 
partial differential operators involved then some alternative 
method of manipulating the matrix may be necessary. There 
are a variety of iterative techniques commonly used for large 
matrix manipulations (inversion, diagonalization, etc.) and 
the critical question is how fast such iterative methods con­
verge. As an experiment I tried solving the above-mentioned 
Schrodinger equation iteratively by a few different strategies 
and found convergence that varied from fair (about 112 deci­
mal accuracy gained per iteration) to very good (several deci­
mals gained per iteration.) As with all iterative schemes it is 
valuable to have a good starting guess for the solution; and 
the attempts I made worked best when I used the resulting 
eigenvector for the solved N - 1 problem to get a starting 
estimate for the N-problem eigenvector through use of the 
basic interpolation formula (1). 

IV. EXAMPLE II 

For a problem on the semi-infinite line O";;r < 00 consid­
er the Schrodinger equation for the hydrogen atom: 

[ _ ...!. .£.. +...!. 1 (I + 1) _ ...!.]t/J (r) = Et/J (r). (26) 
2 dr 2 r r 

At the origin t/J goes to zero as ,; + 1 and at infinity it goes 
exponentially to zero for bound states (E negative eigenval­
ues). 

To choose a good reference function u(r) we would like a 
function which has analytic properties similar to t/J for finite r 
and also has many zeroes. It is known that the solution of(26) 
for E = 0 is given in terms of a Bessel function: 

t/JE=O(r) = rl/2J21 + 1 ((Sr)I/2). (27) 

This leads to the choice 

u(r) = rl/2J21 + 1 [(~r/l (2S) 

with the mesh points 

rn = (h ISlfn, J21 + 1 (vn) = 0, n = 1,2,3,... . (29) 
With the change of variables 

t/Jm = XmJil+ 1 (vm), (30) 
we reduce the differential equation (26) to the algebraic form 

64 1 S [S/(/+l) 1] L -h 2 ~ _ Tn )2 Xm + 3h 2 4 + . .2 Xn 
m.,.n n m Yn Yn 

S 
- -::2 X" = Ex .. · (31) 

hYn 
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Numerical computations of the ground state eigenvalue 
(/ = 0) were carried out for a sequence of mesh scales (h = 1, 
~, !, ~, -h) and a sequence of truncations 
(m, n = 1,2,3, ... ,N, for N = 1,2,3,4, ... ). At each h value the 
error would decrease rapidly with increasing N (about one 
decimal place improvement per unit step in N) until it 
reached a saturation value; then one would need to decrease 
h to gain further improvement. Taking the results from these 
saturation points one could deduce an overall convergence 
rate which went approximately as 

E;:::;lO-N. (32) 

This is an experimental result; I have not tried (as in the 
previous section) to carry out an analytical estimate of the 
expected error. This is a very rapid convergence rate, indi­
cating that this is an extremely powerful approximation 
technique for atomic wave functions. 

The major nuisance in this calculation was the need to 
generate zeroes of a Bessel function. As an alternative, I tried 
using the reference function 

u(r) = r' + 112 sin[ 1T{rlh )1/2], (33) 

with the mesh points given by 

r" = hn2
, n = 1,2, .... (34) 

I will not give details but merely state the results of this 
approach. The matrix turns out to be unsymmetrical but this 
poses no serious problem. The ground state eigenvalue com­
putation converges quite well, only slightly slower than the 
first approach: 

E;:::; 1O-(2/3)N. (35) 

v. EXAMPLE III 

For problems on a finite interval one usually works with 
either polynomials or Fourier series as a basis for approxi­
mations. I will give a couple of illustrations based upon the 
latter. 

Suppose we want to approximate the functionf(x) on 
the interval [0, 1] with the boundary conditions 
frO) = f(l) = O. One choice ofthe reference function is 

u (x) = sin(N + 1)1TX, (36) 

which satisfies the same boundary conditions asf(x) and has 
the interior mesh points 

x" = nl(N + 1), n = 1,2,3, ... ,N. (37) 

(Here life is simpler since we do not have to deal with two 
variables, hand N, but only one, N.) 

If we follow the original prescription for building the 
approximation (1), then we will have functions that are not 
simply a finite set of trigonometric functions. An alternative 
is to divide u(x) by something like sin a(x - x,,), rather than 
just (x - x,,). After some experimentation I was able to find 
the following representation, which is equivalent to a trun­
cated Fourier series: 

- N (-lr 
f(x) = sin(N + 1)1TX L f,,~---.!..-

,,=1 2(N+ 1) 
X [cot(1T12)(x - x,,) - cot(1T12)(x + x,,)]. (38) 

From this the second derivative was calculated to be 

1 2 1 1 2 n 
- 3(N + 1) - 6' + 2 csc 17' N + 1 ' 

(_I),,+m [_ csc2(!!.. n - m)] + csc2(!!.. n + m). 
2 2N+l 2N+l 

(39) 

The eigenvalues of this matrix (39), in units of - r, are 

1 (for N = 1); 1,4 (for N = 2); 1,4,9 (for N = 3);... . (40) 

An alternative problem is one with periodic boundary 
conditions: 

f(rp + 217') = f(rp ). (41) 

For N odd we construct the approximate function 

- N N f" (-1)" 
f(rp) = sin -=-<p L . -N ' 

2 ,,= 1 sm~ (rp - rp,,) 
(42) 

with mesh points 

rp" = 21Tn1N; (43) 

and the second derivative operator is represented by 

{

m = n: - -b(N 2 
- 1), 

1"I~n= i:. fm . (-lr- m
+ 1 cos¢"m, 

m=1 m#n. -'-=2~-
2 sm ¢"m 

(44) 

where 
¢"m = (n - m)1TIN. 
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This matrix has the expected eigenvalues: 0, - l(twice), 
- 4(twice), etc. 

For a numerical application I considered the problem 
of the Schrodinger pendulum: 

[ - ~ :022 +g2(l- cos O)]~O) = E~O). (45) 

Using (44), the two lowest eigenvalues were computed for a 
sequence of values of N, for two different values of g. No 
account was taken of the reflection symmetry. Results, 
shown in Table I, exhibit the fastest convergence yet seen. 
The calculation was repeated shifting the coordinate in (42) 
by 90· [actually, by changing cos 0 to sin 0 in (45)] and these 
results were even better, by up to two decimal places accura­
cy at each N. For comparison, a variational calculation of 
(45) using a truncated Fourier series with corresponding 
number of terms gave results which were in between those of 
the two computations just described. 

Some previous work on trigonometric interpolation of 
periodic functions3 bears resemblance to what has been pre­
sented here; but the formula (44) appears to be new. I will 
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TABLE I. Eigenvalues of the Schriidinger pendulum, Eq. (45). 

3 0.29 
5 0.457 
7 0.464 86 
9 0.4649349 

g=1 

11 0.464 935 14734 
13 0.464 935 1477119 
15 0.464 935 1477122" 
17 
19 
21 

1.71 
1.382 
1.34398 
1.3433629 
1.343 360 133 
1.343 360 128403 
1.343360 128 3991" 

• Machine accuracy not reliable after this point. 

confess, however, that the formulas (44) and (39) were first 
obtained by Fourier transform calculation. 

VI. SUMMARY 

The general approach presented here should be very 
powerful in obtaining efficient and accurate numerical com­
putational results in the form of systematic approximations 
to functions that are very smooth. The high accuracy and 
rapid convergence usually associated with variational tech­
niques is obtained along with the simplicity of mesh tech­
niques. The key link between these two methods is the judi­
cious choice of the reference function; here is where the 
human being contributes analytical insights in setting up the 
problem, while leaving the later computational tedium to the 
machine. 

The numerical examples shown here were restricted to 
the solution of one-dimensional differential equations (eigen­
value problems); and the results were excellent. There should 
be many other areas of application for this general method of 
approximating analytic functions. 
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APPENDIX: THE SEMI-INFINITE INTERVAL 

For the infinite interval [ - 00, 00] a general interpola­
tion scheme was given, with uniform intervals, based upon 
trigonometric functions as used in Fourier integrals. For the 
finite interval problem, alternative schemes were again 
based upon trigonometric functions, this time as they are 
used in discrete Fourier series. What follows here is a gener­
alization of the study for the semi-infinite interval [0, 00] 
based upon Bessel functions. 

Choose the reference function, for unspecified value of 
v, 
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0.33 
0.89 
1.33 
1.455 
1.4673 
1.468031 
1.4680535 
1.468 054 007 
1.468 054 013 55 
1.458 054 013 609 

g=3 

13.7 
7.09 
4.97 
4.43 
4.345 
4.33752 
4.3371792 
4.337 17039 
4.337 170257 1 
4.337 170 255 64 

u(x) = x - Y12Jy((xlh )1/2), (AI) 

whichhasthemeshpointsxn = hy:" n = 1,2, ... , whereYn is 
the nth zero ofthe Bessel function Jy(y) on the positive real 
axis. Next, construct the identity integral representation, as 
in (6): 

fIx) = 1. dz. u(x) f(z) , 
J 2m u(z) z - x 

(A2) 

with the contour a small circle aroundz = x. Now, move the 
contour following the same general procedure illustrated in 
Fig. 1. The form of (AI) was chosen so that u(z) is analytic in 
the domain Re(z).;;;;O as well as > O. Assumingf(z) is analytic 
in some sizable region around the positive real axis, we ex­
pect exponentially small errors to the approximate interpo­
lation functionf(x) that results from the residues at each of 
the zeroes of u(z): 

fIx) = L f(hy:,)2 ~(x) 2h 1 + y/2 Y! + y. (A3) 
n x - hYn J y(yn) 

From this one can calculate the definite integral 

roo dx x'J'(x) = Lf(hy~ )4h y+ 1(~)2. (A4) 
Jo n J y(yn) 

This is a new "Gaussian quadrature" formula, or rather a 
family of such for any value ofv. In the special cases v = ±! 
this formula reduces to the trapezoidal rule (13). What is 
interesting about this formula is the fact that the points 
Xn = hy~ at which one evaluates the functionf(x) are spaced 
farther and farther apart as n increases. 
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