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Large-5 classical solution for the one-matrix model
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Large-N quantum systems are known to be dominated by a single classical solution M.b, which is the reduced
transition matrix among the ground state and relevant "generalized-adjoint" eigenstates. For the one-matrix model,
we obtain M.b (and hence the spectrum) for transitions among the ground state and high-lying adjoint states. The
method of solution is a new "quasiclassical" quantum mechanics, with no penetration of classically forbidden
regions —yet another classical aspect of the large-N limit.

I. INTRODUCTION

Some time ago, Jevicki and Papanicolaou' con-
jectured that the large-N limit of quantum sys-
tems would be dominated by a single solution of
the classical equations of motion. The original
work was on O(N) vector models, but subsequent
work verified the conjecture for the one-matrix
model, and gauge theories. Ezndigg that so!u-
tion has proven more difficult; it has thus far
been obtained only for the vector models.

Recently, an alternative verification of the con-
jecture, using large-N matrix mechanics, ' has
provided the full physical interpretation of the
large-N classical solution. It is the set of reduced
transition matrix elements among the ground state
and those "generalized-adjoint" states which dom-
inate in the large-N limit. As a result, the time
dependence of the large-N classical solution is
now known to be

iaaf„(t) =e' .«'i)f.,(0),

where 8„=E, —E, are the energy differences
among these states. The program is interesting
physically because the generalized-adjoint states
correspond, in temporal-gauge quantum chromo-
dynamics (QCD), to the heavy-quark meson states.

In the present work, we will extend the approach
of Ref. 4, solving for the large-N classical so-
lution (and spectrum, etc. ) in the case of the one-
matrix model.

The method of solution of the classical equation
of motion (and constraint) is new. We relate the
system to a new "quasiclassical" quantum mech-
anics, in which the equal-time operator algebra
is of the form

(1.2)

where l 0) is the ground state of the system. This
is an unfamiliar dynamics, but it (and probably
variants thereof) is consistent. We call this dyn-
amics quasiclassical because, as it turns out,
with (1.2), classically forbidden regions are truly

forbidden. In the cases of interest, this dynamics
yields a spectrum which is asymptotically linear,
in agreement with previous work. ' The method
also provides an appropriate pedagogical link with
the "collective field" method of Sakita and Jevicki. '

II. MATRIX MECHANICS AND CONSTRAINED
CLASSICAL SYSTEMS

In this section, we briefly repeat the derivation~
of the classical system that governs the large-N
limit. One of the basic tools is matrix mechanics,
and the first point to make is one which, despite
initial appearances, is not solely pedantic: Ma-
trix mechanics can alset7ys be viewed as a con-
strained classical system.

Consider, for example, ordinary (N =1) quantum
mechanics of a single variable, with classical
equation of motion

q+V'(q) =0, V'(q) =—V(q) .
cia

Quantizing the system in the usual way (q-q) and
taking matrix elements among energy eigenstates

(2.1)

q„.(t) =(nl q(t) lm)

yields the system

q + V'(q) = 0, [ q, q] =in,

(2.2)

(2.3)

q„(t) =e' nm'q (0). (2.4)

This example does not, of course, illustrate the
important part of the large-N conjecture —that a
solution of the original classical equations of mo-

where q is the matrix whose elements are q„. We
may view this as a "constrained classical system. "
The object in question is a matrix; the classical
equation is exactly that of the one-matrix model,
and the commutator is the constraint.

The size of the matrix in question is obtainable
from the constraint; the matrix must be infinite-
dimensional. Because n and m label energy eigen-
states, one is instructed to seek only that class-
ical solution with time dependence
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tion is relevant. Indeed, here we must solve a
U(~) classical equation to describe a U(1) quantum
system. Can this be remedied?

Suppose we started with the U(N} one-matrix
model, whose quantized form is

(oIM..(t)Ia'I ', n&-=(6„,6...-N-'6. ,6..., )

xN~(N2 —1)-~M,„(t),

(0IM., I o) = 6.-Ps„(t),
(2 6)

dt'
—M+N+V'(MN ~) =0

(2.6)

etc. The resulting constrained class:cal system
for the reduced matrix elements is'

[M.„P„]= i@6,,6.„.

(0 I Tr[M(t, )M(t,}M(t,)]I 0&, (2.6)

where I 0& is the ground state of the system. At
this stage of the argument, any other singlet state
may be used on the outside.

We will not work out the equations for the full
singlet and adjoint sectors here, but specialize to
the large-N limit, where there is an important
simplification: factorization.

Consider, in the large-N limit, a singlet chan-
nel in an ordered ground-state expectation value,
such as (2.6). It is known then (only for ground-
state expectation value now} that, of all possible
singlet states in a singlet channel, the ground
state dominates (factorization). Thus, in the
large-N limit, the completeness relation for these
functions may be written

I =I o&&oI + Q Iet, n&&et, nI . (2.'I)

Here n labels energy and a, b are the adjoint-state
labels. The large-N simplification is simply the
omission of the other singlets.

These are the states we sandwich about the equa-
tion of motion. Bardakci's' reduced matrix ele-
ments are useful, e.g.,

Here V(SVS ) = V(M), [V'(e)]„=(deeds„)V(x), and
S is an element of U(N) Im.agine taking matrix
elements among all energy eigenstates. The eigen-
states are labeled with energy n, and many SU(N)
labels, so that, again, even at N=~, we arrive
at a constrained classical system where the "clas-
sical matrix*' has many more labels than the orig-
inal classical matrix. This tail chasing can be
terminated in the following manner.

To achieve correspondence between the original
and final classical equations, one must work on a
subset of the eigenstates, the natural set being
singlet and adjoint eigenstates. Thi.s idea paral-
lels Bardakci, ' who used fixed time eigenstates
of invariant position, instead of energy eigen-
states His .group theory (and reduced matrix ele-
ments} carries over immediately, however, to the
energy eigenstates. These energy eigenstates
suffice to saturate any "ordered" Wightman func-
tion, e.g.,

M+N+V'(MN +) =0,

[M,M]„8 =iA%6„06(}0.
(2.9)

Once again the constraint determines the size of
the matrix M to be infinite. Therefore, at N =~,
we have an isomorphism between the original and
final classical equations of motion.

The particular classical solution we seek must
have the time dependence

M.,(t) =e' .~' M.,(O), (2.10)

and we will be able to interpret S&„=E,-E, as
the energy differences among the ground state
and those adjoint eigenstates which dominate at
large ¹

We finally note that the true ground-state en-
ergy is computable from

E N
M, N, +NVMNuh (2.11)

while the collective field of Sakita and Jevicki' is

(,(e}=(0 — d},e"*Te(e ""}
0)

1

due""(e '~)N
27r

00 ' (2.12)

III. OPERATOR FORMULATION
OF CLASSICAL SYSTEM

(3.2a)

H In& =&a„,In&, (d„,=E„-E„(mIn&=6„„.(3.3)

We do not yet, however, know the form of the (re-
duced) Hamiltonian II It should be em. phasized

Our task is to solve the constrained classical
system

q+V'(q) =0, [q, q]„=id, ,5», (3.1)

where q=MN +, and we have setS =1. We are
only interested, however, in that solution with the
correct time dependence q„(t) = 'e~ ' ((q0) The.
system is evidently a matrix mechanics of the
following operator system:

i[II, q]=q=p,

i[H, p]=p=-V (q), (3.2b)

[q, p] =iI o&& oI,
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that these states and operators are not the states
of the original one-matrix model. These opera-
tors are seduced operators, from which the re-
duced matrix elements are computed by sand-
wiching between the reduced states ~n&, i.e., q„
=&ul qlb&.

The system (3.2) and (8.3}defines an unusual
quantum mechanics, and it defines it in an un-
familiar manner. In fact, we shall construct II
directly from (3.2) and (3.3) in what follows. It
is not easy. to guess II because of the unusual al-
gebra (3.2c).' Indeed, this algebra is (Iuasidynam-
ical, in the sense that we do not yet know

~
0&.

It is amusing to hunt for algebraic inconsisten-
cies in the system (3.2) and (3.3) Far from dis-
covering any, we were able to see that there is
every reason to expect consistency if the algebra
were generalized to

where p(q) =
~ (()o(q) ~

. Notice that the normaliza-
tion of the ground-state wave function

dqpq =00 =1 (4.3)

guarantees Jdx Q,(x) N. '
We proceed now to construct H„. Equation

(3.2c) may be solved immediately

p„=i —,4,(q)P(q') +f (q)6(q —q') . (4.4)

We have chosen to use the principal-value pres-
cription

1
+

8 Z +ZE' 8 -SE) (4 8)

to define the singularity. Any other choice would
simply lead to a redefinition of the (real} function

f (q). Equation (3.2a) then yields
[q, p] =i+ e„~ n&(n(, (8.4)

where e„are a set of real numbers. This class
of algebras (3.4) includes both our case, and the
usual case (c„=1), but we will not pursue this
generalized dynamics here.

Before solving for 8, we record a number of
useful results. The ground-state energy E(I. (2.11)
now appears as

where

2 8—-If (q}+f(q')l —6(q —q'),
2 8q

z' '
(z +is) (z -ie)' j

'

H„= (— , , (t),(q)P(q') +g(q)6 (q —q')

(4.6)

(4.7)

Z, =N'&oi-', P'+V(q)
i
0&. (3.5)

It is not hard to check that the quantum virial
theorem is independent of the algebra of p and q,
so we have the alternative form

The Schrodinger equation for the ground state
follows from (3.8) and (4.6),

E,=N'&0~ V+-', V q(0& .
The collective field, Eq. (2.12), is now

y (x) =— due"*(O~e '"~N~O&N
2m

Finally,

(3.6)

(3.7)

1 8 1
+ f(q} + .f-'(q} —40(q)—=0, (4 8}

8q 2t

where the slash on the integral sign means prin-
cipal value. Multiplying this equation by P, (q) and
taking the imaginary part leads to

(n(j(n& =0

follows directly from E(I. (3.2a).

IV. COORDINATE REPRESENTATION AND H

(3.8)
6—lf (q)p(q) l = o,

while the identity (3.8) gives the condition

dq qp q =0.

(4 9)

(4.10)
We choose to study our operator system in the

coordinate representation

q I q& =ql q&, &ql q'& =6(q —q'),

(q ( n&
=- y„(q), II„,= (q ( H ( q'&,

(4.1)

etc. In this representation, the ground-state en-
ergy (8.6) and the collective field (3.7) become dq'p(q')

g(q) =
( )2 (4.11)

Together, (4.9) and (4.10) imply fp =0 every-
where. We will assume that g, has no nodes, and

hence f =0 everywhere. The remaining content
of the ground-state equation (4.8) is then the de-
termination of the function g,

$0(x) =N+p(xN '+)

(4.2a)

(4.2b)

turn now to the commutator (3.2b). It is
convenient to define the operator II, whose coor-
dinate representation is
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, 1 8
11.. =4.(qN. '(q'} -.—5(q-q') (4.12)

It is easy to establish that

[q, ll]=t, IiiO&=O. (4.13)

Furthermore, 0 gives us a compact form for the
Hamiltonian

rr = IIP+g, H [0& =O, (4.14)

where g =g(q), and g is given in Eq. (4.11}. With
the help of the identity

P P 1 P P
z -a z-b a-b z-a z-bj

(4.20c)

J=DP+g,
1 a

(D) ~ =-. —~(q —q'}ee (4.21)

which governs the excited-state wave equation
(4.19}.

Z„.=y, '(q)ff„.y, (q')

p(q'}

~q"p(q"}
+5(q -q') (q-q")' '

The operator J is the (doubly) reduced Hamilton-
ian

+w'5(z —a)5(z t ), — (4.15}
V. QUASICLASSICAL DYNAMICS

AND CLASSICALLY FORBIDDEN REGIONS

it is straightforward to verify the operator iden-
tities

(4.16)

where P=p(q). Therefore, in the coordinate rep-
resentation

g2

2 (p')' = -v'(q), (4.17)

or

p(q) =—(2[~ —v(q)]}
1 (4.18)

I ( i) [Xn(q Xn q ] + (q)
(q qt)2 n0 n (4.19)

where the first term on the left can be written as
g(q)X„(q). Here we have set g„=g,X„. This equa-
tion was obtained in an entirely different manner
by Marchesini and Onofri. '

We mention in summary the final forms

[p(q p(q')]'"
~QC q qi

z [p(q) p(q')]~
(q —q')'

(4.20a)

The constant c is determined from the normal-
ization condition (4.3).

The system (3.2) and (3.3) has been successfully
converted to a Schrodinger-equation form, and
the ground state (p) has been determined in the
bargain. Since there is no restriction on the phase
of g„we will set it to zero. Itremainsonlytosolve
the excited-state Schrodinger equation, which
follows from (3.3),

Because p ~ 0, it is clear from (4.18}that the
spectrum of the operator q is limited to the range

e -v(q)~ 0. (5.1)

In the simple case, for example, of the one-ma-
trix oscillator V =—', q', the normalization condi-
tion (4.3) fixes e =1 and hence

i qi - 2+. In the
case of a double well potential V =-—,

' q'+A. q', q
is restricted to the wells, and cannot penetrate
the barrier.

This classical feature, no penetration of class-
ically forbidden regions, is a striking property of
our modified quantum mechanics, governed by the
new equal-time algebra (3.2c). The feature prop-
erly belongs in the growing list of classical as-
pects of the large-N limit.

We should mention that, in general, the norma-
lization condition (fp dq =I, with h nf:1} may be
written as

dq[2(~ —v}}~=2~a. (5.2)

VI. RESULTS FROM THE GROUND-STATE
NAVE FUNCTION

Thus the constant c may be identified as the energy
of the first Bohr-Sommerfeld-Wilson orbit (n =1)
For ordinary potentials then, the spectrum of q is
only out to the first Bohr-Sommerfeld-Wilson
radius.

It is interesting to notice, too, that our modi-
fied one-dimensional quantum mechanics is capa-
ble of phase transitions. Qualitatively, what stops
phase transitions in ordinary quantum mechanics
is tunneling. Here, we have a partial return to
classical physics; there is no tunneling. One ex-
pects, and finds, 9 a qualitative change in the sys-
tem as the coupling is raised so that e just tops a
potential barrier, as in the double well.

+5(q-q )
(q qlr}2 (4.20b)

Our first observation is that, from Eq. (4.2b)
and (4.18), the collective field is
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Po(x) =-(2N[e —V(xN +)])+ (6.1)
Consider a principal-value integral, like g(q),

of the form

in agreement with Ref. 6.
Consider next the ground-state energy, Eq.

(4.2a), in the case V =X 'e(qX~'). lt is not hard
to show then that

~(~) =n(~)x-',

where Q(X) is defined as in Ref. 5,

dx2QX -vs ~'=A. .

With additional algebra, ' we show that

(6.2)

(6.3)

(6.4a)

„X
(p') =N'X-' dh'X'~(X'),

Q

dQ
dX'

(6.4b)

(6.4c)

where (p'}, is the true ground-state expectation
value of P. The ground-state energy, Eq. (6.4a),
is in agreement with Ref. 5.

We turn now to a discussion of the excited-state
Schrodinger equation (4.19).

VII. EXCITED-STATE SOLUTIONS

The large-n spectrum (~„,) of the excited-state
wave equation (4.19) was given in Ref. 5. To con-
struct the large-N classical solution, we will also
need the wave functions. We therefore present
our own treatment of the equation.

An exact solution of (4.19) is easily verified for
the matrix oscillator V =—,

' q', mp =(2(1 —q'/2))'+,

2 cos8 =q M =n n=0 1 ~ ~ ~ ~
sin(n+ 1)e

sin8 fl Q

(7.1)

The solutions are Chebyshev polynomials in q,
and the spectrum is in agreement with Ref. 4.
These states indeed correspond to the original
matrix states (a~")„,

~
0) which saturate the adjoint

channels of the ordered ground-state expectation
values in the large-N limit.

In the case of more general V, we will limit
ourselves to polynomial potentials for which the
spectrum of q is the single connected region R:
a & q & I), and for which p(q} vanishes as a square
root as q approaches a turning point.

There is an important clue about analyticity (all
complex q) in the oscillator solutions (7.1). Being
polynomials in q, we may consider them as en-
tire functions in the complex q plane. This is
special for the oscillator, but a similar useful
result can be established for the class of poten-
tials specified above.

' p(q')dq' (7.2)

p(q) -=p(q)[(q —a)(f —q)]-~ (7.3)

has branch points (i.e., only the "complex" branch
points).

Consider now the excited-state integral equation
(4.19). We have shown that g(q} has branch points
only where p does. It is self-consistent then to

(0)

I
G

0
0 b

(b)

FIG. 1. (a) Region of analyticity of E(q). (b) I' is
analytic about a and b.

By our assumptions on p, considered as a func-
tion of complex q, it has branch points at a and b

on the real axis, plus possible co~plex branch
points. We choose to draw all cuts away from the
region R. p is then certainly analytic near R, and
the principal-value contours are taken just over
and under R. We define an analytic continuation
of F to complex q by continuously deforming the
contours of the q' integral ahead of q. Analyticity
for E is then established within the contour C
= —', (C, +C ) shown in Fig. 1(a). Because p has
square root branch cuts from a and b, the hori-
zontal portions F„ I', of C, and C cancel, leaving
the equivalent contour C' =-,' (C,'+C') shown in Fig.
1(b). Thus, our continuation of E is analytic about
a and b . The same trick does not work for the
complex branch points. Continuing in this fashion,
we conclude that our analytic continuation of F has
branch points only where
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search for solutions X„with those branch points.
In the case of the oscillator, then, X„will be en-
tire.

It is convenient to take the solution in the form

y„(q)
-
=p(q}X„(q)-=sing„(q), (7.4)

where Q„and hence C „have branch points where

p does. X„ is analytic at a and b, so P„(a) = $„(b)
=0. We specify the phase ambiguity by requiring
for 4 „

e„(a)=0, C„(b) =~(n+I}. (V.5)

Consider next the principal-value integral in the
integral equation. It may be expressed as

( t) =-m4' sin@ +6
(q qi}2 n n n ~ (7.6a)

" 2i c, (q-q'}'

d '
e-ig(e')

2i c- (q —q'}2 (7.6b)

This time we swept both contours up in the e'~

term, and down for the e='~ term, picking up the
appropriate residues when we cross the pole at q.
The contours C, are again those shown in Fig. 1
(a). The horizontal portions (I'„I',}of C, and C
may again be shown to cancel. The reason is that

p and hence 4„has square root branch points at
a and b, so e'~ on top of the cut equals e '~ on the
bottom. The contours C, in Eq. (V.6b) may then
be replaced by C', in Fig. 1(b).

For large n, we expect (and will find} that e'~ de-
creases rapidly in the upper half plane, and also
will allow the vertical segments of Fig. 1(b}to be
pushed to infinity. Our leading approximation is
then to neglect 6„. The integral equation becomes

( —=exp[- (Im.4 (q, ) ~ ], (V.10)

where, as in the figures, q, is the location of the
closest complex branch point of p. The solutions
(V.8) and (V.9) are therefore exact for the oscil-
lator. For the purely quartic potential, the error
works out to be exp(-vn/2). For the energies,
the error is at least this small; and probably
O($'). Our error estimates then disagree with the
O(n ') of Ref. 5, although we are in qualitative
agreement with their numerical results. The
source of the discrepancy is presumably the can-
cellation of the horizontal segments in the fig-
ures.

A number of small points deserve mention. The
approximate results (V.B) and (V.9) should be sup-
plemented by the exact solution P, = p (ground
state for any potential, with ~0, =0}. Also, we
have noticed that, in the case V =—,

' q'+Xq4, the
large-n wave functions may be expressed in terms
of incomplete elliptic integrals. Finally, it is
apparent, in comparison with Ref. 5, that our
states are only the "ground-state family" of ad-
joint states. Presumably, as in the oscillator,
these states saturate ordered ground-state ex-
pectation values in the large-N limit.

VIII. THE LARGE-N CLASSICAL SOLUTION

Here we summarize our results for the large-N
classical solution for the one-matrix model, Eq.
(2.9}. We want

M.„(t)=N~'(m
~ q(t) ~

n}

plane, and that the vertical segments of C', can be
pushed to infinity. The wave-function error is then
of order

[-&..+alp

which is easily integrated to

(V.V)
=N e' ' —QQq

p
(8.1)

1 dq4'.(q)= —
J

—,[~„o-g(q'}].
m g. p(q')

(V.8)
To bring out the classical structure of the result,
we define

With Eq. (V.5), the linear spectrum is obtained,

~„,=~ (n+1)+—,
p(q)

(7.9a)

(V.Qb)

The constant + is the same as that defined in Eq.
(6.4c), and the linear spectrum is in agreement
with Ref. 5.

Having the leading terms in the wave functions
(7.8) and energies (V.9), the errors may be com-
puted by insertion into 6„. It is easily checked
that e'~ does decrease rapidly in the upper half

dq
7'(q) =- I, , T —= 2~ (b },

Jn 7I'p q
(8.2)

r/2
M „(t)=N 'e'"mn'm, dr qQ P„.

0

We know from our previous work

(8.4)

where a and b are the left and right turning points,
respectively:. ~(q) is then the classical transit
time from the left turning point to q, while T is
the classical period of the motion. Further,

+T =2m, q =wp, (8.$)

where the overdot denotes derivative with respect
to &. Then,
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1 ~

Ao=p = Vi

27TS~
y„=2(mr) +sin, n large

(8' 5)

r/2 ~
Moo -N~ dq qp -N+ q2q

0
(8 ' 6a)

where, as written, the functions P„are orthonor-
mal.

Our results for the large-N classie al solution
' are then (m, n large),

Note added in proof: The following work has
been brought to our attention: O. Haan, Z . Phys.
C6, 845 (1980). In a Euclidean formulation, this
author has independently obtained the quasiclassi-
cal commutation relation (1.2), and used it to
solve the z ero-dimensional model.
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