implies that

$$
W_{k i}^{(0)}=A_{i} \delta_{k i},
$$

where usually we think of A_{i} depending only on x. Here A_{i} also depends on both ζ and t (for example, the time dependence determined via (1.2) could imply A_{2} $=\exp \left(i \zeta^{3} t\right)$). By considering the next order equation, $O(1)$, the x dependence of A_{i} may be obtained:

$$
\begin{aligned}
& i\left(d_{k}-d_{i}\right) W_{k i}^{(1)} \\
& \quad=\frac{\partial}{\partial x} W_{k i}^{(0)}-\sum_{m} N_{k m} W_{m i}^{(0)}=\frac{\partial A_{1}}{\partial x} \delta_{k i}-A_{i} N_{k t} .
\end{aligned}
$$

Since $N_{i i}=0, \partial A_{i} / \partial x=0$ and

$$
W_{k i}^{(1)}= \begin{cases}0, & k=i, \\ -N_{k i} A_{i} / i\left(d_{k}-d_{i}\right), & k \neq i,\end{cases}
$$

where $W_{i i}^{(1)}=0$, because $W_{i i}^{(1)} \neq 0$ is equivalent to the introduction in A_{1} of $O(1 / \zeta)$ term. In a similar way, the higher order terms may be directly calculated. Note that the equations for $W_{k i}^{(p)}$ will be linear. From these results we see that

$$
V_{k i}=A_{i}(\zeta, t) \exp \left(i \zeta d_{t} x\right)\left[\delta_{k i}+O(1 / \zeta)\right] .
$$

By considering the variables $\Gamma_{k t}=V_{k i} / V_{i t}$, the as yet unknown expression $A_{i}(\zeta, t)$ will be of no importance.
${ }^{1}$ C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).
${ }^{2}$ C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Comm. Pure Appl. Math. 27, 97 (1974).
${ }^{3}$ V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].
${ }^{4}$ P.D. Lax, Comm. Pure Appl. Math. 21, 467 (1968).
${ }^{5}$ M. J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Phys. Rev. Lett. 31, 125 (1973).
${ }^{6}$ M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 53, 249 (1974).
${ }^{7}$ V. E. Zakharov and S. V. Manakov, Zh. Eksp. Teor. Fiz. Pis. Red. 18, 413 (1973) [Sov. Phys. JETP Lett. 18, 243 (1973)].
${ }^{8}$ M. J. Ablowitz and R. Haberman, J. Math. Phys. 16, 2301 (1975).
${ }^{3}$ R. M. Miura, C.S. Gardner, and M. D. Kruskal, J. Math. Phys. 9, 1204 (1968).
${ }^{10} \mathrm{~K}$. Konno, H. Sanuki, and Y. H. Ichikawa, Prog. Theor. Phys، 52, 886 (1974).
${ }^{11}$ H. Sanuki and K. Konno, Phys. Lett. A 48, 221 (1974).
${ }^{12}$ M. Wadati, H. Sanuki, and K. Konno, Prog. Theor. Phys. 53, 419 (1975).
${ }^{13}$ E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).
${ }^{14}$ A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

Addendum: A classical perturbation theory [J. Math. Phys. 18, 110 (1977)

Charles Schwartz

Department of Physics, University of California, Berkeley, California 94720 (Received 13 February 1977)

[^0]
[^0]: ${ }^{3}$ J. K. Percus, Comm. Pure Appl. Math. 17, 137 (1964).

