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A compact formula is found for the perturbation expansion of a general one-dimensional Hamiltonian 
system in classical mechanics. The technique is also applied to the mathematical problem of functional 
inversion. 

PERTURBATION THEORY FOR CLASSICAL 
MECHANICS 

We consider a system with one degree of freedom, 
with the Hamiltonian H =H(p, q) being independent of the 
time I. We assume that we have bounded, periodic 
motion at some value E of the energy. That is, the 
equation E = H(p, q) describes a single closed curve 
(the orbit) in the jJ-q plane (phase space). Now con
sider the integral 

T=J (dpdqo(E-H(P.q)), (1) 

involving the Dirac delta function; the domain of the 
integral is to include the orbit. We shall first show that 
this integral T is equal to the period of motion at en
ergy E. 

Doing the integral over p, we get 

T~ fd"!;i ~ CH~~. 'I) i .. )~. (2) 

where Pm are all points satisfying E =H(Pm, q) for fixed 
q. But we have from Hamilton's equation of motion 

and we then see that the expression T is just 

f Ii? = i dl=T(El, 
E q J E 

where the integral goes once around the orbit. 

(3) 

(4) 

We can thus express the time average of any function 
F of the dynamical variables taken over the orbit at 
energy E, as 

(F;E) = T~E)ff dpdqO(E-HlF(p,q). (5) 

Now, for the perturbation theory, suppose that we are 
given H = H 0 + >JIl and we seek an expansion in powers of 
A. The basic step is to regard E as an independent vari
able and then write the Taylor series expansion, 

~. 1 ~ d )" o(E - Ho - >JIl ) = L. - - >JIl - o(E - Ho), 
":0 nl dE 

T(E) = ~ (~t)" (dd
E
)1 f dp dq(Hl(p, q))"o(E - Ho) 

;:. (- A)" (d )" 
= ~ --;:zy- dE To(E)(H'{; E)o· 

(6) 

(7) 

Here, the subscript "0" means that the averages are 
performed over the orbit of the zeroth-order Hamil
tonian Ho. This formula is very compact; its evaluation 
involves only the operation of integration over the un-

perturbed orbits, followed by differentiation with re
spect to the energy. For comparison, one may look at 
the formulas obtained in "canonical perturbation theory" 
(see, for example, Saletan and Cromerl). That analysis 
is based upon the action-angle formalism (our result 
can be reexpressed in terms of action-angle variables 
but there is no particular advantage in doing so) and ap
pears as an expansion for the energy E, thought of as a 
dependent variable; the expansion formula is there 
worked out only to second order in A, and the form is 
quite messy in appearance. 

We also get the formula 

(E) /. :'-. (- A)" ( d)" ( )( " . T \F, E) = f:o -11-1 - dE To E H1F, E)o· 

We will compute some examples based upon the 
harmonic oscillator, 

H = E~ + ~(2 o 2111 2 'j , 

which has the solutions (at energy E) given by 

q = nEIl? sin(wol + <P), Wo = ,.jk/m, 

p = v'2l!m cos(wol + <P), 

To(E) = 21T /wo (independent of E). 

1. Consider the perturbation Hamiltonian Hl = I q i a 

1 /2' (2E)"0/2 
(H'{; E) = 21T 0 de Ii' I sinel "a. 

(8) 

(9) 

(10) 

(11) 

This integral may be evaluated and the derivatives with 
respect to E are likewise easily evaluated; the result is 

For a = 2 we get the familiar result, 

T(E)- 21T £ (n-ill 
- w ":0 (- ~) 1 II 1 

_ (--.!!_7 ) 1 /2 
- 21T k + 2A . 

/- 2A)" = ~1T (1 + 2A) -1/2 

\ k Wo k 

(12) 

Having this series explicitly given, we can ask about 
its radius of convergence. The ratio of successive 
terms, for large n, is 

_-Aa(2E a )(0-2)/2 
R -----

" k k a-2 
(13) 

and thus we will have convergence up to that value of the 
energy E for which this ratio is 1. We now ask for the 
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significance of this critical value of the energy, 

\ 
k(o-- 2)(- 11.0-) 2 12..(J I 

E*- -- - I - 2 0- k . 
(14) 

It can be readily shown that at this energy the orbit 
reaches an amplitude at which the total potential energy 
has a zero slope and the motion thereafter is qualita
tively different. Thus we conclude, at least for this 
example, that the perturbation series will converge 
for all energies for which the period is a finite and con
tinuous function of the energy. (In this we must allow 
for changing the sign of A.) 

2. Consider the perturbation 

H =!!'q3+!!'q4+E. q5+r!:. q6+... (15) 
I 3 4 5 6 • 

We calculate 

T(E)wo=l + ~ (-~b+ E a2 )+ E2 (_ Ed+ 105 b2 

27T k 2 4 6 k kf 4 64 k 

+ 1 ac _ 105 a
2
b + 385 a

4)+ 0(E3) (16) 
2 k 16 k 2 144 k 3 , 

which gives the leading energy dependent corrections to 
the period of a general nonlinear oscillator. 

APPENDIX 

The expansion technique used above finds application 
to some problems removed from Hamiltonian mechan
ics. Consider a given function F whose inverse is 
sought: 

y =F(x), x=rl(y). 

We assume that F is a monotonic function, so that this 
inverse is unique, Now suppose we have F= Fo + AFI, 
where A is again a small parameter, We would expect 
to find an expansion 

p-I(y):= Fo-Ib') + 6 A"G"e)'), 
11=1 

where the terms G" could be found by a lenghy process 
of Taylor expansions, What is somewhat qurprising is 
that we can find a compact formula for the general 
term in this series, 

Again, starting from the integral of a delta function, 
we have 

(dx o(y _ F(x» = -~ - \ = dx = A p-I(y), J I F (x) x.rl (y) dy dy 

Substituting F= Fo + AFj, we make the Taylor series 
expansion of this same integral to get 

t (- ~)" (dd )"fdx o(y - Fo(x»Ft"(x), 
11=0 n. Y 

Equating these two expressions, and then performing 
one integral in y, we get 

F-I(y) = Fool(y) + t (- ~)" (A) "01 (Ft,(x»" l ' 
,.,1 n. dy Fo(x) x.Fiil(y) 

Again, the trick in finding this compact formula was 
to regard y, and not x, as the independent variable. 
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For one simple example of application of this formula, 
consider 

we find the inversion: 

X:=yl/~+f; (_A)" I.d)"ol~1 
. ..I n! \dy ax .. -1 X~ylla 

1/""'( (Jl-a)/,,)" (n{3/a+1/a-1)! 
-y L' - 11.1' { / 
-. ..0' n!a n[({3- 0')/0']+1 a}!· 

This series is readily seen to be convergent up to that 
point at which dy/dx becomes zero for either sign of A. 

Now consider extending this technique to functions of 
several variables: 

y;=F01(X)+AFlj(X), X=(Xj,X2, ... ,XN), i=l,N, 

where we wish to solve for x. in terms of the y J. For 
simplicity we take the function Fo to be the identity 
function: 

Yi =x, + A<P.(x) 

[later, one can set Xi = F o, (z) to recover the more gen
eral case]. Now consider the following integral: 

/fo~1 ••• d~N O(YI - ~I - A<PI W) " . ob' N - ~N - A<P N(~» 

. det \ 0" + A a~I~~S) \ . Gm. 

by changing integration variables from the ~i' s to 

11,:= ~I + A<plm, 

we see that this integral has just the value G(x) where 
x, are related to y, by the equations given above. (The 
determinant is the Jacobian which is needed to make 
this transformation work out simply.) 

Now we use the Taylor series expansion, as before, 
using the variables Y i to expand the arguments of the 
delta functions in power series in A: 

This general formula is not exactly in the form of a 
power series in A because the determinant is an Nth 
degree polynomial in A; but it is the most compact form 
of the functional inversion problem for several varia
bles. Using the equation that results from setting G(x) 
= 1, we can rewrite the general formula as 

G(X) = G(y) + t (-AI )" 
.. I n 
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xdetlo +A~ I 
Ii a.Vi' 

involving the commutator of G with the derivative 
operators. 

For the case N = 1 we have 

G(X)=G(y)+E (-n~)" [(:vy,G(Y)}~"(Y) 

x [1 + A o¢'(y)] l' =X + A¢'(x) a.r ,. , 

and this can be rearranged into a strict power series 
in A, yielding 

G(x) = G( r) + t (- A)" (1..) n-I ¢'"( v) aG(y) • 
. ".1 n! a.v . ay 

This formula is equivalent to our earlier result on 
function inversion with one variable. This formula was 
first published by Lagrange in 1770 (see Whittaker and 
Watson2 ; the derivation given there does not use delta 
functions and has the added virtue that one can more 
readily see what the radius of convergence of the series 
will be). The formula we have given above for several 
variables is, as far as we know, new. For N = 2 the 
series can be rearranged and, with some care, we 
obtain 

YI =xI + A¢'I (Xt> X2), .\'2 =X2 + A¢'2(xt> X2), 

G(x\>X2)=GC"I,.\'2)+t (_A)" 0 -1\ _/ll/~~)'I"I(~~)'2"1 
".1 'I +'2'" I' 2' \V) I v) 2 

112 J. Math. PhV5., Vol. 18, No.1, January 1977 

X[02G( v" 1'2) + aG(y" V2) II ~~.1.L1:1.2 
0YI aV2 aYI 0Y2 

+ oG(VI,j'2) 1 01n¢'2(YI,Y2)]¢"I(V V )¢,'2(V \,) 
0Y2 2 aYI I . \>. 2 2 . \>. 2 

of which a special case is 

xl=VI+0(-A)"0---- - - ¢'~.:..:t:L. .. 1 (0)""'"1(0)'01 CI"'~o' 
. ""I I 11 (n -1)! 0YI oyz aY2 

For another special case consider the linear forms 
N 

¢' i (x) = 6 AfJx i for any N. 
i-I 

Then, taking G = 1, we find the formula 

1 .. (- A)" 
-d-et:-:(~l '-+-AA-:-:") = ~ -n-! -

XA'lkl,A'2k2"" ,A'nk"' 

where the set of labelS (k l , k2' ••• ,k") goes over each 
permutation of the set (1,,12, ••• ,1"). 
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