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GENERALIZED BETHE-SALPETER EQUATIONS
FOR COUPLED TWO- AND THREE-BODY
AMPLITUDES®

Charles Schwartz
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Berkeley, California

1. INTRODUCTION

The Bethe-Salpeter equation is a relativistic
generalization of the Schrédinger wave equation.
For two particles we would write the BS equation

as follows
¥(l, 2) = ¥o(1, 2)

¥ jjc(lz, 1'29V(1",2")¥(L",2") , (1)

;where "1l" stands for the 4-vector X; representing

i the space-time coordinate for particle number 1,

*,
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148 CHARLES SCHWARTZ

V 1is some interaction, and the two-body Green's

function factors as

G(12, 1'2'") = Gl(l,l')G2(2,2') . (2)

For scattering problems ¥o is a product of two
plane wave functions while for bound states we set
Yo equal to zero. We will restrict our attention
to particles with zero spin, so that relativistic
covariance will be obtained with the requirement of
invariance on the Green's functions and on V. We
will assume the Feynman form for the Green's func-
tions

eip (xy- % ")

R By R )
(2m) p”+my”- i€

Gy (xy, x, ") = -1

and our metric is A-B = A'B - A;B,. (The reason
for this choice is that we shall frequently work
in the 'Wick rotated' space where Ay becomes iA,
and we want a positive metric in this Euclidean
4-dimensional space.)

As a further shorthand we shall write equation

(1) as
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and represent it by the picture

0 - + WO ©

Here the black box stands for the interaction V

which we have now to talk about. The simplest ap-
proximation is the one-particle exchange (ladder

approximation when we iterate the equation.l’z)

For this the interaction is the local potential

Al .4 eiq'(xl_ Xy)
V(x,, x,) =-251d : (7)
1 *2 n—zf ‘iqz+m32_iE

where my is the mass of the spinless exchanged
particle and A 1is related to the coupling con-
stants, A = glg2/16ﬂ2.

We are told that the Eq. (5) is exact (i.e.
represents all of field theory) if the black box
contains all irreducible diagrams and the Green's
functions contain all the one-body renormalizations.
We cannot hope to handle this ultimate theory; the

main objective of our present work is to go beyond

the ladder approximation as far as we can. The
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first suggestion is to include a crossed graph, the

simplest being

/
A

\
7

VAN (8)

We have found that in order to solve the equation
with this non-local interaction we can go to coupled
local equations involving a three-body wavefunction
8(1, 2, 3) as well as the two-body function

v(1, 2); and that once this step has been made we
can easily add in a very large family of other

crossed graphs, some of which are the following.

/' \ v/ s~ f 7

\ X, N N N A Yo 7
\ \ - S
1/\ (N ,'\f\ \ r = =~ /‘\
T~ LK 4 \ ‘( 4 l A28 L] \( ',
N PAEEANEEDAY
/ 'y -_—— PS * N (9
L /\Y\ ST N [, Ty /4\__ )

2. THE COUPLED EQUATIONS IN GRAPHICAL FORM

Let us start with the two-body equation with

single exchange potential and drop the plane wave

term. Remember that i ) stands for ¥(1, 2),

where 1 is the upper line and 2 the lower. The

ladder equation is

:C) = :I) (10)
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We will now cut this picture and introduce the sym-

bol ----4 for the three body function

(1, 2, 3). Eq. (10) is then written as
= =
—_

——

(11)

u
]
l

This is so far nothing more than a definition of
§, and to make that definition more concrete we

shall write the equations out:

y(1, 2) = gZJGz(Z,Z')Q(l, 2', 2" (12a)

8(1, 2, 3)= gljc3(3,1')cl(1,1')w(1g 2) (12b)

Here G3 is the Green's function for the exchanged
particle and the reader is encouraged to work out in
detail that substituting (12b) into (1l2a) does yield
exactly Eq. (1) with the potential (7). This exer-
cise will give confidence for the later games played
with the diagrams. The rule for going from the dia-
gram to the equation is to put in a coupling con-

stant g at a vertex with Green's functions for the

legs which proceed to the left from the vertex, and

integrate over the coordinate to the right of the
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vertex.
Now we can add something new by putting in a

single exchange potential in the second equation.
= ,-]
—

-

+ --r- (13)

H
|
]
\

The added term is

fe @, 196,(2, 20yva, 2980, 2", 3) (14)

where V 1is (7). We cannot write this as an equa-
tion in closed form for V¥ alone, but if we iterate
the second equation for @& we see that we get (5)

with the black box replaced by the infinite series.

—F B 7
. = | + \A, + )\’\
PR S A . e

_T
+ AN 4+ e (15)
o e e

The obvious criticism of what we have so far
is that it does not treat legs 1 and 2 symmetrically;f

this we fix by symmetrizing (13):

- _ 1
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__—J - _l + --—

+ - (16b)
[RSS T |

This step introduces another disease, the overcount-
ing of diagrams. Both (6) and (8) appear twice when
we write out the iterated series for the black box.

At this point we also face the self-energy problem3

with the graphs o~ . The first disease we must,
AR

and shall, fix by modifying the equations; the self
energy we shall handle by standard renormalization
procedures.

But before fixing the equations we shall in-
clude another pair of terms which make the theory
even richer at very little extra cost; these are

the graphs

PP
-1 t (17)

We shall use the word ''exchange' for these interac-
. . . . 1
tions and describe the earlier picture I by
—_—
the word 'crossed.'" 1In the coordinate equation the

first term of (17) is

e, 1')G5(3, 3")6,(1", 3")8(3',2,1")  (18)
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and it is recognized that this is a two-body inter-

action via the exchange of the particle 1.

———— - ——

hY4 = | (19)

To return to the problem of graph counting we
shall now pass from the graphical representation to
a simple algebraic form. We will use E to mean
'emit' (a dashed line), A means 'absorb, X
means 'exchange,' and C means 'cross.' Thus the
transition from the two-body function Y to the

three-body function & is achieved by the E op-

erators:
— —_
E, --- and E, —-~ (20)

and the reverse operations via the A's:

——

Ay Moo and A2 y—— (21)
The 3-3 operations are
_-—;\_ - o o —_l_ v_
Xl ) Xz S ’ C : . (22)

The equations we wish to write down should contain
as their formal iterated solution all possible prod-

ucts of these operators, which will give us the
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large family of graphs we are interested in; but
what double countings are possible? As far as the
3-3 operators Xl’ XZ’ C are concerned there is no
trouble since these three are distinguishable and
any sequential product of these operators represents
a distinct graph. However if we look at 2-3 or 3-2

combinations we find the following identities:

———

1 "*'

— (23)
X2 El = CE2 —-—d

and their inverses,

<
-

=1

|

(@]

m

A X, = A.C A X, = A,C (24)

It appears that these are the only identities in the
2-3 and 3-2 operator products.

Now if there were no redundancies we could rep-
resent the sum of all products for the 2-3 operators

by the equation,
= - . _ -1
% (L -¢ X Xz) (E1 + EZ)Y (25)

However (23) tells us that this will double count

every term that has CE on the right, therefore we
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write the corrected equation:
§=[1-C-X- ij'l(l- C) (E, + E,)¥ (26)

Restored to graphical form this corrected equation

is
— - T4 ] + =1
1

which differs from our earlier construction, (16b)
plus (17), by the last two terms. Now to correct

for over counting in Eq. (1l6a) we will write
vy = (A1+A2)(1-C)<D+|:?] v . (28)
The factor (1- C) takes care of the identities
(24) in the 3-2 operators, and we must now find
[?’] to correct for the identities in the 2-2

operator products. We find

AlEZ = AZEl 1

- N
AZXlEZ = A1X2El d;é*_

AXiEy = AXE) T
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_
-
A.X.X.E, = A X.X.E ™9 (29)

1717272 2727171 _zaos

and believe that this is a complete list of identi-
ties, but have not proved this assertion. Substi-

tuting (26) into (28) we get

. = (A *A)(1-C)(1-C-X) - xz)'l

x (L- C)(Ey +Ey) + [7] (30)

We now simply expand out the first few terms and see
what has been miscounted, according to (29), and

then correct by choosing:

‘\ i ~
[7] ==+ X - r (31)
. v A

This counting of graphs may be verified by actually
writing out the power series in g to higher order;
This is how we first arrived at these results.

There is another type of correction which is
still missing in our equations and should be added

to ['?] . This concerns the self-interaction dia-

grams, those which do not connect from leg 1 to leg

2. From our equations these are the following
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4 ceeeees = - (32)

and we shall use the symbols S1 and S2 to rep-
resent these. As it stands now we can write our

black box as

o -« 51@};‘ 32@;' (33)

where Z stands for all the diagrams which do con-
nect legs 1 and 2. We want to fix this by adding
the term -S;S, to ['?] so that the equation

[

finally looks like

At
y = GG, [K+ 5,63 S,& 515,1¥ (34)

By algebraic manipulation this equation can be

written as

vy = (G

-1 “1,n-1 -1
1 - S].) (Gz - Sz) }(Y (35)

which has the textbook form: the kernel is now
irredu¢ible and the propagators are dressed. This
form will let us play the standard renormalization

games on (G-l - S). We must return to this later.
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A related problem, which we shall also postpone for
now, concerns the effect of these manipulations with
the one-body operators on the plane wave term we
have been ignoring; this is tied up with the wave-
function renormalization constants Z.

We shall now recess the formal analysis of
these equations and turn to the practical work of
rendering useful numerical answers. Whether we use
numerical (mesh point formulas for differentiation
or integration) methods or functional (variational)
methods we will get finite matrix representations
for the various operators E, A, X, C, S, and
finite vector representations for the functions
¥, &. Once these matrices have been constructed
the solution of such formal equations as (26) is a
straightforward job with a computing machine. The
cost depends on the size of the matrices--multipli-
cation or inversion of an N x N matrix takes about
N3 times a few microseconds--and so our objective
is to get an accurate representation with a minimum
basis.

It is interesting to note that we started out

b

. . AN
looking at just one crossed graph, W’ and
— D,

thought we got rid of its non-local character by
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going to a local problem in more variables; but now
we see this thing recurring in the correction term
(31). What we now realize from the discussion of
the previous paragraph is that we need not fear this
since we will have the matrix representation

v = AXE
S 27172

This is a very interesting indication that we can
learn how to evaluate the complicated multi-dimen-
sional integrals of many high order Feynman inte-
grals by appropriate reduction to matrix algebraic
calculations within a machine. This is of course
not an exact result (as we cannot compute T ex-
actly) but we hope to see that we can evaluate many
of these things to some practical accuracy, say one

percent or better.

3. NUMERICAL ANALYSIS

First let us count the variables: the two-body
function Vv has 8 variables and the three-body
function & has 12, but these are considerably re-
duced by symmetry. We start with a 'center of masé'

transformation to take care of the 4-dimensional
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translational invariance

X = Hyx) F oy My Ty T
X = Xz'xl

y = X3- X (36)

¥(xy, x,) = e Xy (x)

§(xl, Xy, X3) = eiP'Xé(x, y) (37)
P is the total energy-momentum of the system which
will now appear as a parameter in the equations for
y and @. From Lorentz invariance we can say that
for a given angular momentum of the state we will
have the two functions depending only on scalar
quantities. Thus { will have two arguments, e.g.
x2, xP, and @ will have five; xz, X'y, y2, x-P,
y*P. We usually work in the rest frame where P =
(E, 0, 0, 0), and E 1is the total energy or rest
mass. ILf we make the further special choice E = 0,

then we have § with only one variable and ¢ with

only three; and so we shall work at first with this

special case. It turns out that the most important
problem concerns the behavior of the wavefunctions

at small distances, and this does not depend on E.
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Once we can solve the problem at E =0 we expect
it will be relatively straightforward to go on to

E > 0.

We shall also write the equations in the
Euclidean 4-space without bothering about the justi-
fication of the Wick rotation, and we start with the
simplest equations (12). After removing the center-

of-mass coordinate these can be written as the dif-

ferential equations (before we set P = 0)

K, (oP + p)¥(x) = 8y8(x, x)

Ky (4P - - DK3(@)8(x, y) = g18(y) ¥(x) (38)

where K is the Klein-Gordon operator

Z mi2 (39)

Ki(k) =k
and p and q are the differential operators

1.2 - (40)

We will also want to look at these equations in

momentum space.

y(x) = [atp P Xy(p)
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d(x, y) = Jabp[atq elP %ela v4(p, g (41)
Ky(uoP+p)y(p) = gzjd4qé(p- 9 q)

g (42)
Ky (1P -p- q)K3(q)d(p, q) = z——;gw(p)

It is of course clear that we could now solve for
¢ and get just the old ladder approximation equa-

tion for ¢

Ky (1P - PIK,(uoP + ) ¥(p)

- 8182
o’ Ja* ey e -n (43)

but this would be defeating our aim of learning to
deal with the three-body function so that we can
put in the other new interactions. So we will
attack the equations (38) or (42) as they stand.
Our first numerical attempt used a variational
method in the simplest way, with the three-variable

function ¢ represented by a sum of product func-

tions in the separate variables. This made it easy

to evaluate the integrals needed for the matrix

elements, but the results were poor. (Poor results
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mean that as we increased systematically the number
of basis functions used the calculated result con-
verged too slowly.) In setting up this calculation
we were easily able to learn from the differential
equation what should be the leading behavior of the
functions as |x| — 0 and as |y| —> 0. We finally
decided that what we had neglected was the rather
tricky behavior as |x-yl—> 0, and this required
behavior was not easily represented by the expan-
sion in products of functions of x times functions
of vy.

This point x=y is certainly important (see
Eq. (38)), and in the Fourier transform variables
concerns the region (p+*+q) large. Our second hope
was to try mesh point solution of the integral equa-
tions in momentum space, since it appeared that such
factors as Kl(p+ q) in the second of Egs. (42)
would take care of this correlation problem for us.
After a long sojourn into the art and science of
numerical quadrature we abandoned this hope. We
will forego a discussion of why we failed here since
if a more clever person, unencumbered by our doubts,
can find a way to make this approach succeed, it

would be very nice.
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Now we return to try variational methods with
correlated basis functions. The task seems very

hard since we will have to evaluate integrals like

fd4pjd4q g1(P)g,(a)gy(p-q) . (44)

But this becomes much easier if we have the Fourier

transforms
£(x) = [a% eIP Xg(p) ,
for then (44) is just the single integral
(2 W% £ (-x)£,(x)E5(x) . (45)

A nice set of functions is the following:

n+2k+2 pn

GknafiiiJ;,%§2+_az)n+k+2'9%4m(§) (46)

where %/n&m is the 4-dimensional spherical harmonic;

on the left side of (46) p means the 4-vector,

while on the right side P stands for the three

angular coordinates and p stands for the magnitude

of the 4-vector. The Fourier transform of (46) is
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2Trzina2(0.R)n+kK (aR)
Flnem$) = & S tn(®)
nom 2K (n+k+1)! nem
= on2i%2%F, _(aR) (%) (47)
kn y/ném

where now we use R for the magnitude of the
4-vector x, and K is the modified Bessel func-
tion.4
For the trick from (44) to (45) to work we can-
not have more products of functions g than shown
in (44), yet the variational principle brings the
trial function in twice along with the operators.
This will be resolved by the fact that the product

of two functions of the type (46) can be easily ex-

panded in a finite series of functions of the same

type.

Z/n{‘m(ﬁ) yn '{4 lml (ﬁ)

_ NLM -
" oy ntma't'm! Yn® (48)

n n'

2 q q
Ch l)(q2+ )P 372 (24 R I 2

J,N N

q
T Pnint, 43t Ty N2 (49)
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where

]
D ,jt! - (-1)rr. ;: r)! (50)

with

)\:.Iir_l-'_:_N r:J_)\_j_j'_l‘

We will need the addition formula

2
1 LA _ 2 * A A
c{D @) = 2 Z Youm® Yo ® (51)

which involves the Gegenbauer polynomial4 Cél) =

J2ﬂ2 n00 * Some other useful formulas are

ynim(—ﬁ) - (_l)nynéé)?’)

(52)

?f%ném - %/nc-m(_l)m

*
IdQ%/an%Jn'L'm' = %m0t Oume (53)

sz’x = Jdnf(;RBdR, Jaa = 2n?,
By = (n+1)? (54)

and
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e{P e © - = 8o © (55)
where
Bl R 1)(n2'ﬂ+21)(N+ 1)
x ¢ |aNM |2 (56)

LMo ' pémn'e’'m

These coefficients Bgn' are related to some
Clebsch-Gordan coefficients for the 4-dimensional
rotation group, and they turn out to be given by

the very simple formula

1 if N =n+n', n+n'- 2,
B._, = ntn'-4,...,/n-n'"]|

0 otherwise (57)

Now we return to Egs. (42) to construct a vari-
ational principle. Since the Eqs. (12) which we
are now working from do not treat the coordinates
X and X in a symmetrical manner the equations
we have are not self-adjoint and the variational
principle must allow for this. We start by writing

~down the expression
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Q= Jap VIR (1P - PIKy(uyP + p) ¥(p)
-ngdpqu %(p)Kl(ulP- P)é(p-q, q)

+(2m)*[dp[dq B(p, @)K (P~ p- q)

X Kz(uzPi-p)K3(q)é(P, q)

-gljdpqu 3 (p, ) K,y (W,P +p) 4(p) (58)

which directly reproduces Eqs. (42) when we carry
out variations of the functions E(p) and z(p, q) .
If we now vary the functions (p) and &(p, q)

we get
Ky (0P - p)T(p) = g [dq B(p, q@) ,

K2<u2P+p)K3<g)Z<p, a)

. _ 82
(2m)*

T+ q) (59)

which equations are not the same as (42). In order
to find the correspondence we make the following

definitions:

T = ¥k
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~ _ & Kl(l-llP' P) +
é6(p, q) = g‘l'K—z-(u—zP—.,.f))sé (P*tq, -q) (60)

Putting (60) into (59) we recover exactly the form

of the original Eqs. (42). The change of variables
in (60) reflects just the interchange of coordinates
1 and 2 since if ¢(x, y) is the Fourier transform
of é(p, q) the Fourier transform of d(p+ q,-q) 1is

#(x, z) where z = x -y.

X3

Xy X Xq (61)

Thus the "adjoint' Eqs. (59) are represented by the

diagrammatic equations

—i (62)

which should be compared to (11) which represent
(42).
Now we make a linear expansion of the varia-

tional functions:
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¥(p) = % c; ¥, (p)
. (63)
v(p) = z ¢ ¥ ()
é(p, q) = E d;x; (p, q)Kil(ulP- P-q)
(64)

It

~ -1
E dixi(p+ q, 'q)Kz (“2P+’p) >

8(p, q)

where the relations (60) have been built in. The
reasoning behind this construction--the way in which
the K factor appears in (64)--should be apparent
if one looks at the second of equations (42):

g1 -1
é(p, = K P-p-
(p, ) ot (W1P-p-q)

x [K3MQ) 10T . (65)

The (p+*q) dependence in K, here is precisely

the correlation which caused difficulty in the first
try discussed earlier; furthermore we are led to use
a separable form for the remaining function which is

called X. Thus for P = 0 and for s-waves we take

wi(P) = Gkooo(P) (66)
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. _(n* 1
x;(p, @) = (3§n4;1/2 (ni-l)S;Gknﬂm(p)
X Gjnc-m(q>('1)m (67)

where the index i stands for the single label (k)

in the case of |, and stands for the triple label

(k, j, n) 1in the case of x. In what follows we
take all the masses, m;, m,, Mg, as well as the
scale parameter ¢ equal to unity.

Variation of the expansion constants gi’ H}
in E} of (58) leaves us with the matrix equation

922 923 c
932 933 D (68)

where C and D are the vectors of coefficients

cy and di; and the matrix elements are now

worked out.

(922)1.1 = fdl‘P wi’(p)Kz(p)wi(p)

® 3 1
p~dp
Io (PzJr l)1<+1<'+2

- 1
T2kt KkND(kFTKTT D
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@), = -8y d*[ata v )X (P q, @)

) A
= ‘ngd de q Gk'OOO(P)z;Gkan(p' Q)

™
Gjn&-m(q)(ni_l)(32n4)1/2

= gy (2m) 4% By o0 (-0) Z P, (%)
4m

(_1)nﬁn

an&-m(x) (n ¥ l) (32,”4)].]2

_ _82(n+ l) S 3
= IOR dR Fy 1o (R)Fy  (R)F 5 (R)
(70)
32, _-8@*"1l) = 4
( )i'i_——lﬁ__— JOR dR
Fklnl(R)Fj 'n"(R)FkO(R) (71)

6933)i.i= (2ﬂ)4jd4pfd4q xi(P*q, -9)K(q)x;(p, q)

4 n'
- Id4pfd4q (2m)*(-1)2 _—
(n+1)(n'+1)327" 4m 4 'm'

Gk’n’{. lml(p+ Q)Gj 'n'4 l_ml(q)(_l)n'

X K(@) Gy (PIC3 g ()
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n

b (4 -1)
[a*p[a%a 2(n+§17(n'+-1)£m§im.

G (ptq)G (p) =
k'n'4'm' knim NLMJ

#NLM ARY M
Antmn ¢ 'mPnin 3+ Conp-m(@ (-1
-4
TEFD@EFD) ot PO fa*

NLMJ
X F, _, (x)F (x)F (x) (-1)M
kndm k'n't'm' JNL-M

__enrent | ANLM 2
2(n+t 1) (n" + l)&mt'm" nidmn '4 'm’

NLMJ

JN 2.3.n+n'+N[" 53
X D gegr (21900 jOR dR

X Fn (R)Fy i 1 (RF 1y (R)

N-n-n'
N + —
- é}Bnn'Diﬁn',j+j' it (-1)
" fR3dR F,_(R)F, s+ (R)F < (R) (72)
0 kn (BIFp g JN

The coefficients B and D have already been

given, (50), (57), and we need only the family of

one dimensional integrals
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%f;RF’dR Fy  (R)Fy 1+ (R)F g0 (R)

I

[(n+k+1)'(n'+k'+1)tN+J+1)17°L

x

® "IN+ Hk THT+
jodR(%)n+n N+k+tk '+J+3

x

K, (R)K 1 (R)K (R) (73)
If we define
R k
£,R) = $) K (®) (74)

we can use the recursion formula

R. 2
fio = (k- DE_; + (P £y (75)

to generate all of (73) from the small number of

integrals
JOdR(f) £4£, £, (76)

where o, u,v take on the values 0 and 1. Effi-
cient computer programs have been constructed to
evaluate the functions KO and Kl’ the integrals

(76) are done numerically, and the larger table of

integrals is built up all in a couple of seconds.
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The range of the indices used in the trial
functions, (66), (67) must be specified. From (43)

we see that

W) ~p® as p—o>-= (77)

and so we choose k > 1 1in (66). Then looking at
the large p and q behavior of the second Eq. ,

(42) we choose
n>0, j>-1, k>1 (78)

in (67). The sequences of terms were ordered by

the inequalities

1 <k <L
0<n<L-1

-1<j<L~-2

ntk<L

nt+tj<L-2 (79)

and thus as the limit L was stepped up, 1, 2, 3,
4, 5, 6, the dimension of the basis for ¢ in-
creased as 1, 5, 14, 30, 55, 91. The further alge-
bra of computing the matrix elements and solving the

algebraic equations (68) up to this size for the
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eigenvalue A = glg2/16ﬂ2 could be done in a frac-

tion of a minute. The numerical results for this

simple exercise are not interesting since this is
just the old ladder approximation. (We see from (65)
that merely the terms n = 0, j = -1 give the ex-
act solution for ¢ in terms of {.) We have
solved this problem before and so we just get a
check on the new method and all the details of this
calculation. Actually the results here converge
faster than those of ref. 1 since the basis of func-
tions used here gives a better representation of the
analytic properties of the wave function at small
distances.

We now advance one step and attack Eqs. (13),

which means adding the term

K3 (uoP + p)Ky () V(x)b(x, ) (80)

to the right side of the second equation (38). This
gives the additional term in the variational expres-
sion (58) as

K3(Q)

p—

8185 )9 [dafap 3o, D rirpry 6T @) (8D)

and with our choice of trial functions (64) this
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multi-dimensional integral cannot be reduced, as (44),
to a simpler form. We shall make another approxi-
mation now,5 but one which we will be able to sys-
tematically improve on; what we shall lose by this
approximation should not be worse than what we al-
ready give up by limiting our trial function expan-
sions (63), (64) to a finite number of terms.

In a shorthand notation we write the equations

as
KiKy¥ = K6

K1K2K3¢ = 613K2¢ + V12K3¢ (82)
which we then rewrite in the form

K Kp¥ = Kpé

K3K1K2¢ = 613K2¢ + KZQ
K K:1VIiko 0 = K ¢ (83)

173 "1272 1

involving a new three-body function Q. For this
function Q we shall expand in a separable basis
as we did for the function X and the resulting
solution of (83) can be described as follows. We

use the symbol <X> to mean the finite matrix rep-

resentation in a separable basis of the operator X.
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What is needed in (8l) is

-1 -1
<K, K4V, oK 7> (84)

o A s

and what we shall calculate with (83) is

-1.,-1 -
<K1K3 VioKy>

! (85)
If our basis were complete, these two expressions
would be identical; with the finite basis we hope
that the loss of accuracy here will not be worse
than the loss of accuracy in the whole calculation

due to the finite size of the basis for §.

For the function (Q we take the expansion
a(p, q) = T e;%;(p, q) (86)
and for its adjoint,
a(p, q) = &% (p*q, -q)
To the matrix 9933 we add the new term

<go> <ao>"Lt<0g> (87)

where
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)= (2ﬂ)4jd4pjd4q x; 1 (P*q; -q)

x x; (P> q) (88)

and

i)° (Zﬂ)Afdapfdaq Xjr(pta, -q)

X x;(p, q) (89)

1f we compare (88) and (89) with (72), and notice

that
K(q)Gkn&m(q) = Gk—ln&m(q) (90)

then we see that (88) is given by the final formula
of (72) with the index j+j' on the D coeffi-
cient increased by one. Eq. (89) is of the same
form with the primed and unprimed indices inter-

changed. Finally we work out
<q>, ;= (Zﬂ)Ajd4pfd4q xi1(ptq, -~)K(p+ q)
-1 4 d*x -1 i(p-p')-x
K (q)jd p'j————a V “(x)e
(2m)
«KeDKE, @ (91)

and following the plan of (72) we find the result
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is given by the final formula of (72) with the fol-

lowing modifications:

reduce the indices k and k' each by
one, increase the index j+ j' by two,
and put the extra factor V'l(R) under
the integral. (92)

Here is the nice result that all the matrix
elements are of the very same type as we have al-
ready dealt with, only the labels are shifted. The
one-dimensional integrals with the V-l(R) factor

are trivial added work

_ L4
V(R) = AgK (R) . (93)

We must also specify the range of the indices for
the function Q. From a study of the last Eq. (83)

we conclude that we want

k > 0 n>0 i>-1 , (94)

or in other words, the k index is lowered one from

what we used for d.

Now we shall report some numerical results of

the calculation we have just set up. To repeat,

the graphical equations are
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| T Gm

+ A - (95)

where we have put in the coupling constants which
are the eigenvalue parameter we are solving for

(at E = 0). The correct relation is A = g1g2/16n%
but in these calculations we fixed A and then
solved for the eigenvalue X = glg2/16ﬁ2. Some

numerical results are given in Table 1 below:

Table 1
L % z 0 % z 1.0 % : 2.0
1 3.693737 2.9766 2.259%
2 3.445500 2.7001 1.9560
3 3.421062 2.7114 2.0002
4 3.418688 2.7042 1.9792
5 3.418501 2.7084 1.9855
6 3.418492 1.9815
extrap. 3.418491 2.7070 1.9828

4 13
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The correct eigenvalue is at A = X = 1.991, as

may be seen from interpolation on the above data.
All the data in this table was produced in less than
two minutes time on a CDC 6400 machine, with pro-
grams that were not optimally efficient. The con-
vergence of the outputs--as the numerical limit L
is advanced--looks quite good. We conclude that we
have successfully solved the problem up to this

point.

4, FURTHER WORK

In the present paper we shall not discuss in
detail the several remaining steps needed to com-
plete the analysis of the problem undertaken. Some
of these steps have been worked out in detail,
others only sketched so far. We will now only men-
tion what these other problems are and how we expect
to deal with them.

After solving (95) we should return to (16) to
get the symmetric emission and absorption from both
legs 1 and 2. This will involve us with the self-
interaction terms (32), the first one of which is

divergent. We then say that the masses appearing
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in the equations are the unrenormalized ones and use
these to formally cancel out the infinity. A pre-
liminary version of this program has been success-
fully carried out on the computer. Next the trial
function must be taken as a symmetric form: the
sum of the functions ¢ and @# of (64). This
generates more integrals but they also turn out to
be of the same form as those we already have. Fin-
ally we should add in the terms (17), and again the
treatment of the integrals looks familiar, although
we have not carried this out on the computer yet.
To get away from E = 0 we should be able to
simply put factors of
Py ) 9

s 96
(pz . 1 (gg—:—z) (96)

into the trial functions. Again this has not been
worked out in detail and there may be pitfalls, but
we guess not. As we get to very weakly bound states
(near the elastic scattering threshold) it may be
necessary to look carefully at the asymptotic (in
x-space) form of the trial functions; and of course

we have not yet looked at the equations for elastic
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and inelastic scattering processes, but this we also
expect to be able to manage.

In considering scattering problems we are very
interested in seeing that we can calculate scatter-
ing amplitudes that are guaranteed to satisfy the
unitarity condition. As a first orientation to this
problem we consider the game of cutting and sewing
graphs. As long as the energy is limited to the
two-body (elastic) region this is rather simple.

1f we have all sequences of graphs

A B C etc. (97)

b b4 b

where each box has no two-body intermediate state,
then cutting can take place only between the boxes
to have at most the two particles on the mass shell,
and the resewing reproduces the same set; thus elas-
tic unitarity is easy to assure.

In the three body sector, m; +m, +my <E <
m; *tm, + 2m,, things are more complicated since
we allow ourselves to cut the two outer legs plus
one inner leg for particle 3 (we have systematically
ignored all closed loops of the outer particles 1

and 2). It is an interesting graphical exercise to

show (and we shall not reproduce this exercise here)
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that the family of graphs generated by our Eqs. (16)
plus (17) is closed under this three-body cutting
and sewing game. Furthermore since we have learned
to construct the equations so that the counting of
graphs is correct, as compared with the series of
Feynman graphs, we are led to say that we will get
a unitary scattering amplitude up to the four-body
threshold.

This argument is incomplete in that it ignores
the contribution of the self-interaction graphs.
It is our hope that, following Saenger,6 we can find
a set of wavefunction renormalization Z factors

which will sort this out.

5. CONCLUSION

The four cardinal principles of elementary par-
ticle theory are relativistic invariance, analyti-
city, unitarity and crossing symmetry. The line of
approach we are taking aims to incorporate the first
three. Our equations come from field theory, which
can be represented as an infinite set of coupled
equations for N-body amplitudes. We truncate first

keeping only two-body functions to get the ladder
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approximation, and at the present stage we include
three-body terms. We hope to go on to four-body7
terms some day and hope to see if this N-body se-
quence of approximations is converging. If this
sequence does in fact converge well then we may
assume that the crossing symmetry, while not ex-
actly built in at any finite approximation, will be
well represented in our final answers.

In the present paper we have ‘seen how to over-
come the problem of miscounting graphs and, most
encouraging, we have found that the numerical as-
pects of the three-body equations are thoroughly
tractable. The details of the renormalization and
the proof of the unitarity in the three-body sector
remain to be completed, as does the actual extension

of the computations to E above zero.

APPENDIX

In considering asymptotic states of the inter-
acting equations we are used to saying that when the
two interacting particles are far apart the poten-
tial terms can be dropped from the equations. This

is obvious in the Schrédinger equation when we have
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V(|r; - r,|) and this function falls to zero

rapidly as r; - x, goes to infinity. However in
dealing with the covariant Bethe-Salpeter equation
the potential depends on the relative time as well

as the relative space distance of the two particles

X—xl‘xz_(tl't2>£l-£2):(t’E)

and the potential is an invariant function

vV = V(\/r2 - tz)

as for example the function given by one particle

exchange

3 ip -ipot
- e
v = fa pldpy ——= T

Pm P TH -

'z
2

If we let r go to infinity with ¢t = 0, then in-
deed we find V ~ e M¥. However if the interval

is timelike rather than spacelike, i.e., if ty -ty
is greater than |r; - r,|/c, then V will be
oscillatory and not exponentially decaying and hence
we cannot ignore it. This is a ridiculous conclu-
sion for it suggests that if the two particles are

found in two detectors 3 meters apart at times which
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differed by more than 108 seconds, then they are
still interacting.

To straighten this out we must recognize that
the asymptotic states are finite packets and that

the process of detection takes place over a finite

time according to some smooth time-packet function.

Let's assume that the detection is monitored

by some time-gating function

f(t) such that £(0) =1,

f—->0 for |t|>T,

and we need the potential averaged as
vpe) = [ e vr, ©) £(T)

Putting in the explicit form of the one-particle-

exchange potential we get

-rJuz*oz-iG

4rr

VT(r) = Jdvg(v)e
where

f(t) = Jdm’g(v)ein

i
i
|
i
§
!
i
|
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and the spectral function g has unit area and

width T 1.

In the limit of £ = constant, we recover the Yukawa
potential Vw = %%%E , and while the integral above
depends on the precise form of g(¥) we might rep-

resent the character of the result as

T /uZ—T—Z

VT ~ L

Thus for any reasonable time-gate we do have effec-
tively the exponential decrease of the interaction
with distance, which we expected on physical grounds.
However if T 1is so short that the uncertainty
principle leads to an energy fluctuation as great

as W then this particle may actually be created,
and can travel over to the other particle and cause
an interaction, and this is what is implied by the

oscillating phase condition in the potential.
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DISCUSSION OF DR. SCHWARTZ'S LECTURE

Pagnamenta: If you have a bound state, then the i
uniqueness theorem for such equations tells

you that the inhomogeneous equation even below

threshold has no solution; your homogeneous
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equation has a solution. You may have a solu-
tion near that bound state pole. Does your
method still work?

Schwartz: Yes. You do the calculation of your in-
put at any point except precisely at a bound
state position.

Pagnamenta: You need a finite region where you can
fit your function.

Schwartz: Yes. You have the whole real line to
fit the function; all that is excluded is a
set of points.

Pagnamenta: An important case is where you have
a weakly bound state.

Schwartz: We treated such an example with a Yukawa
potential and showed that the extrapolation
procedure works.

Omnds: In terms of Padé techniques, I think the
logarithmic behavior at threshold creates no
particular problems.

Nuttall: The difficulty is that there are other
singularities beyond the three-body threshold,
like the sub-energy normal thresholds. You
have to eliminate them before applying the Padé

method. For instance in the two-body region
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you continue the R-matrix which has no singu-
larities. 1In the same spirit you should ex-
tract all the singularities in the three-body
region before you can apply such a method. The
Padé method does not know which side of the cut
to go on and so it cannot possibly give the
right answer if a cut is left. You can con-
tinue by this method only if the function is
analytic.

Schwartz: If you confine yourself to the standard
Padé form, that is true. I would say that if
your function has square root and logarithmic
singularities, then you can write that kind of
function into a Padé form. Then you will have
a function which will mock up the multisheeted
structure that you need. You can now adjust
the parameters to fit the input and this might
give you a better result.

Nuttall: 1If you are talking of the T-matrix, then

there are sub-energy normal thresholds besides
the three-body thresholds.

Schwartz: If the two-body systems have a finite

number of bound states then there will be a
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certain number of two body thresholds. These

will be put in the calculation.

Nuttall: The difficulty is that there are more
variables in the problem when you go to break-
up.

Schwartz: I am talking of the T-matrix as a func-
tion of one variable, the total energy. Here
the only singularities on this sheet are the
physical ones, namely the physical thresholds.
But I agree that there may be some strange
things happening in the other sheets.

Sugar: You are off the energy shell with your ex-
ternal particles and this is the reason why
you have singularities only in the total energy.
Have you tried calculations where you have more !
than one two-particle channel to see what hap-
pens to the second threshold?

Schwartz: Schlessinger has an earlier paper on two-
body scattering and there he has discussed a
two-channel case and it seems to work all ' %; |

right.




