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Generalized Eigenvalue Problems* 
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We examine the equation L(X)+ = 0, where L is a linear operator of the usual 
sort, except that it is not necessarily self-adjoint, and its dependence on the 
eigenvalue parameter X is nol, necessarily linear. Variational principles, nor- 
malization of eigenfunctions, resolution of the identity and operator inversion 
are some of the aspects discussed. 

We are most familiar with t,he eigenvalue problem in the form 

(H - X)ll, = 0 (1) 

with the self-adjoint operator H = H’. Among the well-known resuhs are the 

following. 
(i) Equivalent to (1) is the variational principle 

&I[&] = 0, 

where 

and & is the trial function to be varied. [We use the inner-product notation, 

&IO 1 yh) = / dx~l+(x)O~.~)1C/a(.r), 

where 2 represents whatever independent variables the problem has.] 
(ii) Solutions to ( 1) exist only for some set’ of eigenvalues A,, 

(.H - A,)& = 0. (3) 

(iii) These X, may be discrete or continuous, but are real numbers; and 
for problems with all symmetry removed, we can assume the eigenvalues are non- 
degenerat’e. 

(iv) The eigenfunctions lc/,L form a complete ort,hogonal set which can be 
normalized as 
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(v) The ident,it,y operator may be expanded as 

(vi) We can resolve t’he Green’s function as 

The generalized problem we wish t,o study is that of the equation 

L(x)+ = 0, (7) 

where the linear operator I, may depend on the parameter X in some compli- 
cated manrier; and moreover we allow Lt to differ from L. Consequent,ly, we can 
consider also t#he adjoint equation 

L+(X)f#J = 0, 

or equivalently, 

++L(x) = 0. (8) 

Our objective is to see which of the familiar properties listed earlier for the 
simple case (1) carry over to this more general case. Probably none of what we 
have t#o say will be new, but some of the results were sufficiently nonobvious to 
t,he present writer that it seemed worthwhile to collect’ and present the following 
conclusions. T\To attempt at mat’hemkcal rigor will be made. 

Think about the familiar problem of finding the energy eigenvalues for the 
Schrodinger cquat’ion. We construct solutions of the differential equation, and 
then find that, the boundary conditions will be satisfied only for some particular 
values of the energy E which enters as a parameter in the equation. The fact 
that ,!3 occurs linearly [as X in Eq. (l)] is quite irrelevant to this process. We 
therefore start, our analysis with the following assumption. 

ASSUMPTIOK. Solutions fin of (7) exist only for some (nondegenerate) set of 
eigenvalues A,, ; t’he totality of the eigenfunctions #, form a complete, linearly 
independent set,. The same holds, independently, for the solutions +ml‘ of (8). (9) 

( i’) For a variational principle we construct the following (1) : 

JM+, 41 = (4 I T,(X) I&?. (10) 
It, is obvious that requiring J to be stationary under arbitrary variation of 4’ 
will lead to Eq. (7) for $, and requiring J to be st,at,ionary under arbitrary 
variation of $ will lead t’o Eq. (8) for $. 

The process of making J stationary will also lead t,o a value j\ for t’he eigen- 
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value A. This may hc illustrated by caonsidering the case where we choose our 
kial functions wit’h linear variational parameters, as follows. 

where the U, and the uj are functions chosen from two arbitrary complete sets. 
The expression for J is then 

J[U, C’] = 5 DiLj,(X)C’,, (1’) 
z,,=l 

where 

Lj,(X) = 1 VjL(X)tL*; (13) 

and the variation of C’i gives 

2 D,L,,( X) = 0; (14) 
j=l 

while the variation of 0, gives 

gwc = 0. (15) 

Equations ( 14) and (15) cxch have nontrivial solutions only if 

det’ )) L,,(X) I/ = 0 (16) 

and this algebraic equation determines the approximate eigenvalues x, . As me 
consider N tending to infinity, this matrix representation should yield the exact 
solutions for A,, , +,, , and &‘-. E’or this special class of variational approximations 
(linear parameters only) WC also see that, t,he stat,ionary value of J, call it .r, is 
zero. 

An import,ant property of many variat’ional principles is that they give second- 
order accuracy for some yuitnt’it(y, when the trial function has a first-order error. 
We shall now set how t,his comes about for our problem (10). Suppose we have 
approximate functions 4, $ and eigcnvaluc i\ close, in first order, to some exact 
solut,ion #, $+‘, A: 

4 = 1c/ + w, 6’ = c#J+ + CM+, i = x + 6X. (17) 

iVow we calculate the resulting value of J. 

J” = (6 / L(X) 14, = (4 I L(A) / Ir/> + (4 I L(A) I W) + (& I L(h) I $? 

+ (f$ / (dL/dX)~=i 1 $) (i\ - A’) + secondorder small t,erms. 
(18) 
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The first three terms vanish, and so we can solve for 6X: 

X = X + ,7/g + second-order terms. (I!)) 

Here we have defined the generalized normalization integral as 

Nx = (6 j - aw)/ax I #A>. (20) 

Formulas (19) and (20) for the eigcnvalue X of (7) may be read as the operator 
generalization of Kewt’on’s method (2) for finding a root of the function L(X). 

Returning t,o the special case L(X) = U - X1, 4’ = J/*, we find 

N = (Ir/ I +) 

and (to second order) 

(21) 

This is the famous Rayleigh-Ritz formula. 
Also for the special case of linear variational parameters we saw that J” = 0 

so that X = i\ to second order. 
Thus it appears that none of t’he great power of variationa,l methods of ap- 

proximation has been lost in going from (1) to (7). [An exception to this state- 
ment is the upper bound property of (21) when applied to the lowest, eigen- 
value; but the writer considers this to be a matter of lesser import’ance.] 

We now go on to consider the other aspects of the problem. 
(ii’) The above matrix representation of (7) tells as much as we can say 

about the spectrum of eigenvalues X, ; for the most part we shall appeal to our 
Assumption (9). 

(iii’) The eigenvalues X, may be discrete or continuous, real or complex. 
However t,here exist interesting problems, nonlinear in X and even non self- 
adjoint, for which the spectrum of X is still purely real; we know examples of 
this but no general criteria. 

(iv’) We have assumed the #, to be a complete set (and similarly the c&+) ; 
but in general there is no o~thogmality theorem. 
One exception concerns eigenfunctions which are very close to one another, as in 
a continuum. For eigenvalues X, , X0 , etc., which are very close to some X0 we 
can write Eq. (7) as 

VJi(M + (aLla~)x=x,(~a - hl)lJ/m = O[O, - b>“l. (22) 

If the right-hand side of t,his equation becomes negligible, we have a Zi?lea? 
eigenvalue problem (for X,) with aL/aX playing the role of a weight function. 
Then, in the usual manner, we can deduce the orthogonality property 

(+ 1 (aL/ak)x=r, / +A = 0 for a z P, but X, and ho very close to X0. (23) 
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Some understanding of t.his special formula (23) may be gained by imagining 
that the cont,inuous spectrum is something like that of free waves in an infinite 
box. Then if wc further imagine that the operator dL/dX does not confine the 
region of integration in (23), we can conclude that the integral will be essentially 
zero if t’he wavelengths, labeled by Q: and 0, are not equal. 

The above discussion of t’he variational principle leads us to define a generalized 
normalization integral for each eigenfunction pair. We offer, as a general criterion, 
the statement, that N should not be infinite. (It is however conceivable that N 
might be zero for some state, and this special case deserves further study.) This 
normalizability criterion serves, at least’ partially, to provide the boundary con- 
ditions necessary to make the original eigenvalue problem well defined. Perhaps 
t.he complete specification of these boundary conditions is already cont,ained in 
the statement of the variational principle itself: requiring that .f and its varia- 
tions be bounded, and furthermore that partial integrations should not leave 
ext’ra surface terms. 

(v’) A generalized expansion of the delta-function is 

where P and Q are any nonsingular operators and the numbers It’,, will now be 
determined. 1\lultiply (24) from the left by +:(:c)Q(x) and then integrat#e over 
Z; there results 

From the linear independence of the &+(y/) we can then conclude that we require 

F ($11 QP lIc/m)IVmn = 61, . (26) 

A similar operation with P(y)#l( y) on the right, of (24) shows that, Ft’ is bot,h 
the right and thr left inverse of the matrix 

hL/ QI’ IJln). (27) 

(vi’) Finally we consider an integral involving the (;reen’s function: 

This function D may be a11 analytic function of XY assuming suit,ably nice proper- 
ties for F and G, except when X approaches some eigenvalue X0 of the equation 

L(X,)gh = 0. 

We can find no explicit resolution of (28) t.o compare with (6) ; but we can in- 
vestigate D(k) in the immediate neighborhood of the point, X = X0 . 



Icirst WC insert into (28), just before the function F the unit operator as reprcl- 
sented by (2-E) wit.h the choice I’ = I,( A), Q = I: 

m A) = c (c: I ~vJlrr/n&n 1 F). (20‘) 
m, n 

The dependence on X is now buried in TV, which is the inverse of the matrix 

Tnl = (&I LO) l!h). (30) 

Now we set x = ho + 6 and expand for small E, keeping only the leading term 
in each case.’ 

Too = +i5” 1 (azJ/dXh=x, / +oj = -tNo , (31a) 

Toj = - tNo, , (31b) 

Tie = -tNio , (310) 

7’ij = (61 ZJ(XO) I$,), 131d) 

where i, j # 0. If we now write out the equations determining W, 

c WmnTnl = c TmnWnt = 6,l, (32) 72 ?I 

separating zero and nonzero caomponent8s and then keeping only leading terms 
for t ---f 0, we find 

WC0 = -& C WikNto, 
w h 

1 
Woa = -- + finite terms. 

ENO 

(33b) 

(33c) 

(33d) 

Thus we see t’hat W is dominated by t’he first term in (33d), and our final for- 
mula is 

Nx) A 
6 I +oMo I F) 1 

( ) h+Xo (401 - (dL/~h)x=x,l~oj iiFX . 
(34) 

The result (34) is really correct only if XO is a discrete eigenvalue; if AO lies in 
some dense set of eigenvnlues X, (becoming continuous in some limit), then we 

1 Note: We require that t can be chosen so that X is not an eigenvalue; this assumes that 
the spectrum is at most dense along a line, but not filling any area in the complex plane. 
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proceed as follows. Let the labels cy, ,8 stand for the set of states with eigenvalues 
very close to X; these labels replace the single label 0 used above. The dominant 
terms in the matrix mlmn are seen to bc the elements WaB , which represent the 
inverse of the matrix 

1’ aS = (42 WI 1~64 E (+=I --aLlah Ih/a)(h - A). (35) 

i\Tow we can use t,he special orthogonality relat,ion, Eq. (23), to (*onelude t#hat 

Tais = No& - X)&B . (36) 

This leads to 

and the final formula is 

This is the best, we can do to generalize (6), and we see again the appearance 
of the generalized normalization integral No defined in Eq. (20). (If No should 
vanish, we would have to carry our analysis further, expecting to find that D 
has a higher order pole at X = X0 .) 

As an example of some things we have been discussing, consider the Bethe- 
Salpeter equation, after rotation to an imaginary time variable (3). The differcn- 
tial operator is 

This is in a 4dimensional space and each P is ( -i) t,imes a spatial derivative 
operator. The eigenvalue parameter is the energy 8, which obviously occurs in a 
nonlinear manner. The identification of 

N = -aLlas 

as an appropriate normalization operator has been made for this equation by 
several authors (4), but’ the generality of this form has perhaps not been apprc- 
ciated. 

It is also apparent that, except in the special case ~1~ = ))I~ and ~1~ = ,.Q, 
the operator (39) is not self-adjoint in the usual sense. However, an extended 
definition of the adjoint operation to 

$+(x, x.4) = l)*ix, -2-4) 
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will allow us to say that 

L’ = L. 

In such cases as this, where some simple operation t’mnsforms the right, eigen- 
vector I) into the left cigenvcctor c#J, we can say that the operator is effectively 

self-adjoint. 
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