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By means of numerical examples in one dimensional Hamiltonian problems, 
we study the behavior of the approximation scheme known as the New Tamm- 
Dancoff method. It is concluded that for good convergence of this, and other 
related methods, one should arrange to start with a symmetric set of equations. 

INTRODUCTION 

It has long been an outstanding problem to achieve effective solutions to the 
dynamical equations of quantum field theory and the non-relativistic many-body 
problem away from the limit of weak couplings. We here close our eyes to some 
famous and formidable difficulties in these theories (infrared and ultraviolet 
divergences, etc.) and simply consider how we might effectively calculate num- 
bers when perturbation theory is not an acceptable answer. We have in mind 
that one will need to make good use of modern computing machines, but some 
appropriate analytical preparations must come first. For while one may expect 
to be able to handle several coupled int’egro-differential equations in several 
variables, the equations of interest are infinite in extent and the number of inde- 
pendent variables is likewise unlimited. 

The general line of approximation we wish to study may be called the N- 
particle scheme. In quantum field theory we are referring to the Tamm-Dancoff 
approximation, in bot,h its old form (OTD) and its new (NTD). In this paper 
we strip away many complicating aspects of the real problems and look at simple 
one-dimensional Hamiltonian problems. The question we wish to study is 
whether these above mentioned schemes do converge nicely to the correct 
answers as the order of approximation, N, is systematically advanced. 

METHODS 

The general problem is: given a Hamiltonian X, defined in some Hilbert space, 
we want to find its spectrum (assumed discrete) 

x I a) = E, I 4, (a I P> = b . (1) 
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Method I: This is the conventional variational approximation technique, which 
for field theory problems may be called the old Tamm-Dancoff (OTD) method. 
Take N members of some arbitrary complete (not necessarily orthonormal) set 
of basis vectors in the Hilbert space of X, 

I 4, i= 1,2,...,N 

and construct the N X N matrix representation of (1) _ 

(2) 

11 Xii - EIij 11 = 0 

i, j = 1, 2, . . . , N, 
(3) 

Xij = (i I X I j), Ijj = (i j j). (4) 

One then solves (3) numerically for the eigenvalue E(N) ; and the question at 
hand is, “How rapidly does this sequence of approximate eigenvalues-arrived 
at by systematically increasing the set (2)- converge to the true value E,?” 

Method II: The so-called New Tamm-Dancoff (NTD) method, invented by 

Dyson (1), is characterized by the fact that attention is focused not on a single 
eigenvalue of X, but rather on the difference of some pair of these eigenvalues. 
(In quantum field theory the energy of every state has an i&mite added con- 
stant, attributed to the infinite spatial domain of the vacuum, and this causes 
serious difficulties in the OTD method.) 

Take some complete set of operators 0~ which are functions of the operators 
appearing in x (these were chosen by Dyson as ordered products of annihilation 
and creation operators of the field). Define as the variables of interest the set of 
matrix elements of these 0i between some chosen pair of eigenstates of X. 

ASB = (a 1 oj 1 a>. (5) 

Now consider the commutator of 0i with X: 

[O,i J X] = Cj SijOj 

where the expansion on the right, characterized by the numbers Sij , is supposed 
to exist because the 0, are a complete set. Now taking the (II, p matrix element of 
(6) we get the infinite set of coupled equations for the amplitudes Ai, (sup- 
pressing the labels (Y, p) 

AA; = Ci SijAj (7) 

where A E EB - E, is the “eigenvalue” being sought. While the system of equa- 
tions (7) is less familiar than (3) it looks no more complicated at first glance; 
the important question is, “Can we find an accurate approximation scheme for 
reducing this infinite set of equations to some manageable size?“. This question 
was considered by Symanzik (6) and, while he reached no definitive conclusion, 



APPROXIMATION IN QUANTUM MECHANICS 279 

he suggested that the NTD method might have serious difficulty due to the fol- 
lowing observation. The matrix (3) is symmetric (Hermitian) and this insures 
the convergence of the Ritz procedure; but if one solves (7) by successive trun- 
cations (set all Ai = 0 for i > N and keep only the first N equations), the re- 
sulting N X N matrix Xii is not symmetric and one knows nothing in general 
about the convergence of the computed results A(N) as N is increased. 

In this paper we shall study, by simple numerical examples, just this question 
of the importance of the symmetry of truncated sets of infinite coupled equations. 
To this purpose we shall also define the following modifications of methods I and 
II. 

Method I’: We proceed much as in Method I but force the equations to be- 
come nonsymmetrical. Assume an expansion of the exact state in terms of the 
chosen basis 

/ a> = Ci Ci 1 i); (8) 

then insert this into the Schrodinger equation, multiply from the left by some 
function or operator W, then contract with one of the basis vectors to obtain 

Cj (Bij - EWaj)Cj = 0 (9) 
where 

Wij = (i [ W [ j) (10) 

might easily be a symmetric matrix, but 

Bij = (i 1 WH ) j) (11) 

will not be symmetric, excepting a trivial choice of W. 
Method II’: We seek some special set of operators (3; such that the matrix 

Xij is symmetric. 

EXAMPLES: METHOD I 

We take as the object of study for almost all of our examples the one dimen- 
sional nonlinear oscillator 

x = $ + g, [P, xl = -i. (12) 

Parameters for the mass and coupling strength may be removed by appropriate 
scaling of length and energy, and we take (12) as our standard form. The basis 
for our solution will be in terms of the harmonic oscillator 

P2 X0= -+u2;= ,@+a+;) 
2 
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where 

a = (co/2y2(x + ip/w) 

a+ = (w/2y2(s - ip/w) 

[a, a+1 = 1 
(14) 

and w is some parameter to be determined. 
The simplest variational calculation is to just use a single eigenstate of ~0 and 

get a best fit to the corresponding state of x by varying w. For the ground state 
this yields 

w = (3/2)1/3 

E(0) = SW; (15) 

and in the subsequent calculations we keep w fixed at this value and give the 
energy in units of E(0) : 

E = E~~w. (16) 

The required matrix elements are 

n) = $ (2n + 1) 

(I I 
n g n) = $(Zn" + 2n + 1) 

(n - 21$17x> = -i[n(n - l)]“” 

(n - 21$17x) = i(2n - l)[n(n - 1)]“2 

(n-4~~(n)=~[~(n-l)(n-2)(n-3)1"2; 

(17) 

and the solution of the matrix eigenvalue problem (3) is easily done by machine, 
yielding the results shown in Table I, for the ground state. The results obviously 
converge exceedingly fast. Similar calculations for the first and second excited 
states converged only slightly slower; the resulting values are 

to = 0.98028535 

el = 3.5127282 (18) 

e2 = 6.892655, 

which we believe approximate the exact eigenvalues to the number of figures 
given. 
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(It may be of interest to compare these results with the WKB approximation. 
For the Hamilbonian 

X(Z) = $ + y (19) 

we get the WKB approximation for the energy of the nth quantum state 

E,(Z) = [(n + ~~)/A(z)]‘““““+‘” (20) 
l/2 

A(Z) = i!!& pz /‘Q/(1 - yy2, 
0 

(21) 

which is the exact answer for 1 = 2 (harmonic oscillator). For 1 = 4 this gives 
the following numbers to be compared with (18): 0.80, 3.46, 6.86; and the indi- 
cation is that WKB becomes very good away from the ground state.) 

In conclusion we state that the convergence of Method I is generally known to 
be good, and in Table I we see how very good it is for this particular problem. 

EXAMPLES: METHOD II 

We shall attack the Hamiltonian (12) by the NTD method as originally con- 
ceived by Dyson, defining amplitudes 

A m.n = (a I a+“a” 1 P). 

m, n = 0, 1, 2, . . . . 
(22) 

We shall use the operators a and a+ defined by (14) with w arbitrarily fixed at 
the value given in (15). It takes a fair amount of algebra to compute the matrix 

TABLE I 

LOWEST EIGENVALUE OF (12) BY METHOD I 

Maximum n/2 Size of matrix Error 

0 1 l.OWOOOOO 

1 2 1.00000000 

2 3 0.98283858 

3 4 0.98037067 

4 5 0.98036642 

5 6 0.98030926 

6 7 0.98028737 

7 8 0.98028556 

8 9 0.98028555 

9 10 0.98028547 

10 11 0.98028540 

11 12 0.98028536 

12 13 0.98028535 

13 14 0.98028535 

1.97 x 10-Z 
1.97 x 10-Z 
2.55 X lo+ 
8.53 x 10-s 

8.10 x 10-b 
2.39 x 10-C 
1.98 x 10-G 
2.1 x 10-7 
2.0 x 10-7 
1.2 x 10-7 
5. x 10-s 
1. x 10-E 

- 
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S of (6), and we give here the resulting equation (7), using the abbreviation 

(ij) = &a+i,n+~) (23) 

[-%A + (n - m)(n + m + 3)1(00) + n(n - 1)[2(1 - 1) + (2 - 2)] 

- m(m - 1)[2(-1 + 1) + (-2 + 211 

+ Nn(n - l)(n - 2)[(0 - 2) + (1 - 3)l 

- S$m(m - l)(m - 2)[(-20) + (-3 + l)] (24) 

+ g$(n - l)(n - 2)(n - 3)(0 - 4) 

-+gm(m - l)(m - 2)(m - 3)( -40) + 33'n(3 - 1) - 33’m( -1 + 3) 

+ 35(3n - m)(20) - 33/(3m - n)(O + 2) + 2(n - m)(l + 1) = 0 

where 

A = (& - -@d/(348) 

is the difference of eigenvalues in the units (16). 
This is an obviously complicated, nonsymmetrical recursion formula coupling 

sixteen terms mapped over a two-dimensional grid (m, n). It is however still 
very simple to let the computer find eigenvalues A, once we fix a scheme for 
truncating the equations to finite (and not too big) size. We tried two schemes: 
keep only all amplitudes A m ,R and corresponding equations (24) such that 

(a) m+n42L+l L = 0, 1, 2, **- (triangular) (25a) 

(b) msL+l and nsL+l L = 0, 1, 2, * *. (square) (25b). 

We shall be looking only at the first interval, between the ground and first 
excited states, and the parity selection rule limits us to m + n odd. The nu- 
merical results are shown jointly in Fig. 1, and the arrow there indicates the true 
value (from (18)). 

The apparent conclusion is that Method II is very bad. Below L = 7 there 
seems to be fairly regular oscillation, with scheme (a) sort of converging and 
scheme (b) sort of diverging; but this is only a transient phenomenon since the 
points further to the right look more erratic. The best point (scheme (a) at 
L = 6) is in error by only one seventh of one per cent-but this must be con- 
sidered a lucky accident; and after the first few points all the scheme (a) values 
err by no more than 2%-due perhaps to the propitious scaling given by the 
chosen value of W. However there is clearly not any “good convergence” to be 
seen here (particularly when compared to the seven place accuracy achieved at 
the comparable stage of Method I) ; and we feel that Symanzik’s (2) conjecture 
has been realized true for this problem. 
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FIG. 1. Results of Method II (unsymmetrical NTD) for the lowest eigenvalue interval 
of the Hamiltonian (12). The arrow indicates the correct answer. We were unable to find the 
eigenvalue for scheme (b) at L = 9. 

Even if the results of these calculations had converged reasonably well (as we 
shall make them do later), it is not likely that we would suggest Method II as 
a practical way to solve one-dimensional eigenvalue problems. Note that the 
matrix size, for the Lth approximation in Method I was L + 1, while in Method 
II it is (L + l)(L + 2) f or scheme (a) and $i(L + 2)’ for scheme (b). Thus 
the last scheme (a) point in Fig. 1 came from a matrix of dimension 110 which 
had to be manipulated in double precision arithmetic in order to give meaningful 
results; this was a more than trivial computer job. There is, in going from Method 
I to Method II, a doubling of the variables which seems unnecessary for simple 
quantum mechanical problems (the infinite set of equations (3) will yield the 
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singly infinite set of eigenvalues E, while (7) will yield the doubly infinite set 
E, - Eo). However, in the realm of field theory, with its already numerous de- 
grees of freedom, this deficiency may not be noticed; we should concentrate 
simply on the question of convergence, yes or no. 

EXAMPLES: METHOD I’ 

We first studied the same Hamiltonian and basis as was used in the example 
for Method I, inserting for the weight function the positive operator 

w  = (a + a+>2. (26) 

The nonsymmetric eigenvalue problem (9) was solved in 30 successive approxi- 
mations, and t,he results are shown in Big. 2. Our conclusion is clearly: bad con- 
vergence behavior. 

One might suggest that the poor behavior is not due to the symmetry problem, 

1.8 
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1.4 

1.2 

0.6 

C 

I I I I I I I 

4 8 12 16 20 24 2 

n/2 

FIG. 2. Results of Method I’ (unsymmetrized OTD) for the lowest eigenvaIue of (12) 
using the weight function W = x2, The arrow indicates the correct answer. 
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but rather to the fact that our weight function W vanishes at the origin (in the 
z-representation) and thus “wipes out” an important region of space for the 
determination of a good wave function. In order to overcome this objection we 
repeated the calculation with 

w = 1 + (a + a+>“. (27) 
These results are shown in Fig. 3; and while the long wiggly tail is seen to stay 
much closer to the true value (about 1% off) than it did before (about 40% off), 
the convergence rate is still something painfully slow. 

A second example of Method I’ was also studied. The Hamiltonian here was 
the radial equation for s-waves in a Yukawa potential, 

1.05 
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42 
FIG. 3. Results of Method I’ (unsymmetrised OTD) for the lowest eigenvalue of (12) 

using the weight function W = x* + 1/(2w). The arrow indicates the correct answer. 
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with the boundary condition on the eigenfunction 

u(0) = u( w) = 0. 

The basis functions used for the calculation were chosen as the exponential- 
weighted Laguerre polynomials which satisfy the eigenvalue equation 

(29) 

and are orthonormal with respect to integrals with the weight function l/r. We 
considered the energy as fixed, E = - k2, and then searched for the eigenvalue 
of the coupling parameter g. We calculated through 15 orders of approximation 
by Method I (for k = s), and through 25 orders of Method I’ using W = l/r.’ 
The two sets of results converged well at very nearly the same rate: the error 
decreasing by about a factor of two with each step. It was interesting to note that 
while g(1) approached the true value (2.769226) monotonically from above, 
g(I’) approached at almost the same distance monotonically from below. 

Thus we conclude that while Method I’ (unsymmetrized Ritz variational 
procedure) may, as per our first example, be much worse than Method I (usual 
symmetric Ritz), it also may, as per our second example, prove to be just as 
good. 

EXAMPLES: METHOD II’ 

Let us start by trying to guess why Method II (the New Tamm-Dancoff 
method) did not work. We will consider the variables p and x, which are just 
linear combinations of the operators a and a+ used above. It is not hard to see 
that the truncation approximation, 

Ai = 0 for i > some maximum, 

is absurd. (We are now considering the amplitudes 

A mn = (a 1 p”x” 1 P) (30) 

and let the index i stand for the pair of labels m, n.) For, thinking of the integral 
(30) in the x representation, we readily see that these amplitudes get larger as 
the indices m or n increase. What sort of operator functions ai can we think of 
whose matrix elements would decrease as we increased the index? Our answer, 
for functions rather than operators, would be a set of oscillating functions whose 
wavelengths get shorter as the index increases. (It is in this manner that we ex- 
plain the good convergence of Method I.) We shall thus investigate the following 

1 This calculation may be seen as a prototype of the method used by Rotellberg (3) in 
his study of a three-body problem. 
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structure 

oi = Um(P>V*(~>, 
i = (m, n) (31) 

where u and v are some complete sets of functions, probably orthonormal in 
some sense to be determined. 

Now let us see if we can make the matrix Sij of (7) symmetric. We suppose 
that the Hamiltonian is a Hermitian operator built out of powers of p and x. 
The general term in the commutator (6) looks like 

b&(p>vn(x>, P%“l = P”hdP>, Gd~) + s7b(P)bYb(~), p”lx” 

and we wish to re-express these terms as 

(33) 

with S a Hermitian matrix. This may clearly be achieved by choosing u and v 
to be orthonormal functions of the type f(E), where the operators 

“multiply by $” (34) 

and r ’ 
a 

= -% 

are Hermitian. Equivalently we require 

s abAm&) a = L2~ 

and 

f~4w~) - j-x4f&) = 0. (35) 

The variables p and x are real, with the range - 00 to + 00, and so we choose 
Hermite polynomials times a Gaussian as an appropriate basis. 

v,(z) -+ 1 n): nth eigenstate of harmonic oscillator in $ with frequency 
w, 

%n(P> + Fourier transform of the same thing with frequency w’. (36) 

m, n = 0, 1,2, ..* . 
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For the Hamiltonian (12) we then get. the NTD equations (7) 

AA,,,,, = &&m.mw Am/n/ (37) 

where we now have the symmetric matrix 

s mn adn = -i (m’ 1 m)(n’ 1 7r2 1 n) + w’(m’ 1 { j m)(n’ 1 7r 1 n) 

+ & (m’ 1 r4 1 m>(n’ 1 n> - -$ (m’ I 7? I m>ln’ I E I 4 (38) 

+$ (m’ I T” 1 m)b’ I f2 I n) - -$ b’ I r I m>(n’ I t3 I 4. 

2.62 

2.60 

2.56 

2.54 

2.52 

2.50 

I I I I I I I I 

FIG. 4. Results of Method II’ (symmetrized NTD) for the lowest eigenvalue interval of 
(12). The arrow indicates the correct answer. Compare with Fig. 1, noting change of scale 
of the ordinate. 
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We set w = w’ = ( 3/2)“3 and let the machine grind out solutions. The results 
are shown in Fig. 4 for the same two truncation schemes (25) 3s were used for 
the nons@metrical Method II. The convergence looks fairly good (for as far 
as we ‘have gone in the calculations). The rate of convergence is still a lot less 
than with Met’hod I; but there is a vast improvement over the useless results of 
Method II. We have not tried t.o see if these results can be markedly improved 
by another choice of the scale parameters W, w’; it seems sufficient that we have 
seen a significant gain upon transforming the NTD equations to a symmetric 
form. 

In addition to the Hermiticity of X, another feature which sometimes im- 
proves the convergence of the Ritz method is the fact that X has a lower limit 
to its spectrum. The eigenvalue A of the NTD equations, on the ot’her hand, 
clearly ranges from + 00 to - ~0. It is possible to construct a second order IVTD 
method by taking the commutator with x twice. The resulting equat,ions look 
like 

where A’ is clearly 20, and the matrix T = X2 now has all the nice properties 
of a Hamiltonian, if we have symmetrized S. We have made a quick t,ry at t,his 
extension of the above calculations. The resulting eigenvalues do approach the 
correct value monotonically, to be compared wit,h the points in Fig. 4, which 
oscillate. However, the magnitudes of the errors were much greater, and the 
method seemed t.oo cumbersome to warrant closer study at this time. 

CONCLUSIONS 

Our chief inberest is the validity of the Proposition: If one has an infinite 
system of equations to be solved by a sequence of truncations, then to insure (or 
at least to encourage) a good convergence of these approximations toward the 
true answer one should start with a symmetric system. Alternatively, one could 
say the approximations must follow from some variational principle. 

Let us now review the results of the preceding numerical examples to see just 
how firmly this proposition has been supported. 

Showing good results from symmetric systems: 
Method I -definitely yes 
Method II’--yes; certainly improved over Method II, but nowhere as good 

as Method I. 
Showing bad results from nonsymmetrical systems: 

Method II-yes 
Method I’-yes, for first example; but definitely no, for the second (Yu- 

kawa potential problem), 
We conclude that the evidence does not yield a resounding affirmation of the 

Proposit.ion, but it does definitely point favorably in that direction. It should be 
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clear t,o the reader that our study has been very “experimental” in character; 
we cannot “prove” a proposition by numerical examples, and we would be happy 
to have any rigorous analysis possible for the elucidation of our questions. The 
problems we are really interested in solving are not simple one-dimensional 
Schrodinger equations, but the much more complex systems of field theory and 
many-body interactions. It is certainly a big step from the simple examples of 
this paper to those real problems, but we believe this principle of seeking a sym- 
metric system of equations may prove to be useful. 

APPENDIX 

We shall show here how one may go from the NTD method back to the fa- 
miliar Schrijdinger equation. Recalling our earlier comments about the NTD 
method requiring twice the number of variables, let us see what happens when 
we try to work in only one variable, say x. Define the amplitudes 

& = (B I Q(x) I4 (A.11 

for some set of functionals Q(x), between eigenfunctions of the given Hamil- 
tonian 

X 1 a) = Em 1 a> (A.21 

x = f + V(x). (A.3) 

Taking the commutator with X we get 

(Ep - &JAB = - f (0 I PQ' + Q'P I a) (A.4) 

which, because of the p operators, is a completely new quantity, not contained in 
the set of AQ . In order to remove the p’s, we take a second commutator with X, 
rearrange the terms so that only p” appears, and then replace it by 2(x - V), 
to arrive at 

(EB - JW~& = (P IF(Q) 14 

where the functional 5 is given by 

(-4.5) 

s(Q) = -Pi&“” + (2V - E, - EB)QN + V’Q’, (-4.6) 

We have eliminated the second variable from the NTD equations; and we now 
remove the corollary excess of eigenvalues (Ep - E,) by limiting our attention 
to the states LY = 0. The left side of (A.5) is then zero, and so we set 

9 = 0. (-4.7) 
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One would like to recover from (A.7) the familiar Schrodinger equation, 

-4&c(z) + (V(lt) - E&m(z) = 0; (A.81 

and indeed this may be done with the identification 

(A.9) 

One can snnilarly see that choosing some fixed set of basis functions for the 
Q’s, Eq. (A.7) will be recognized as the equations of the OTD method. 

We have not been able to extend this trick for Hamiltonians more general 
than the one-dimensional form (A.3). 
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