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Numerical Solution of Fixed-Source Field Theories*

CHARLKs Sea&ARTz

DePartrnent of Physics, University of California, Berkeley, California
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A modi6cation of the Tamm-DancoB method for 6xed-source meson theories is set up for automatic
computation. The Chew (1954) model of pion-nucleon interactions is calculated with up to six virtual
mesons. Bound-state parameters and scattering phase shifts are obtained, accurate to about 1%, at a cost
of about 3 min of computer time each.

INTRODUCTION

HE virtue of a quantized field theory for ele-
mentary particle interactions is that it provides

(what is postulated to be) a complete dynamical descrip-
tion for the system. However, it has been possible up to
now to carry out calculations with these theories only in
the weak coupling limit (perturbation theory); and for
the realm of "strong interaction physics" this is clearly
inapplicable. O~er the years there have been many
approximate calculations made, but none, it appears,
have been successful enough that one could say the
theory has been "solved. "We have set out on our quest
for effective nonperturbative calculational techniques
with the following ideas in mind: that we shall con-
struct not one approximation, but a sequence of approxi-
mations, the successive evaluations of which will give a
series of well-converging numerical answers to all
physical questions; and that we shall make the fullest
use of modern computing machines in this effort. This
second point does not imply a surrender to the brute
force of mechanical tools—for, as the reader may
readily see, such an attack will fail grossly —but rather a
blending of modest analytical and numerical techniques.

Realizing that a computer deals only with discrete
and finite quantities, one can make the following list of
continuous or unbounded quantities which are known
to occur in quantum field theory:

(].) indefinite number of dependent variables (num-
ber of particles);

(2) continuum of independent variables (space-time)
associated with each dependent variable;

(3) divergences at large spacial distances (associated
with the vacuum state);

(4) divergences at large momenta (due to the point
interactions) .

We are not able to handle all of these problems. In
the present paper vre study only Axed-source models
in which difhculty number 3 does not arise and
number 4 is removed by the use of a cutoff; thus our
present interest is with problems number 1 and 2. (Prob-
lem number 2 is also faced in its simplest form since
we will have only one spatial dimension to deal with

~ This work was supported in part by the U. S. Atomic Energy
Commission and the U. S. Air Force under Grant AF-AFQSR
130-63.

B

here. ) Within covariant perturbation theory there have
been devised means of handling all of these problems,
and so many practicing 6eld theorists would never con-
sider numbers 1, 2, 3 as problems at all, and number 4
as solved by the renormalization technique. However,
once we give up the expansion in coupling constant, all
these questions must be considered anew.

THE APPROXIMATION SCHEME

Let us now start with the Hamiltonian for a quantized
field linearly coupled to a fixed source.

K= dk ggtetgtos+ g dk (aged+ ttgtvst) ~

The function v& may contain a cutoff, as well as further
details of the coupling such as spin operators, etc. We
wish only to describe the general approach now; the
specifics of a particular problem will be given later.

We can give the I'ock space representation for the
state vector built up from the bare vacuum state

~
0).

O'=Fe~ 0)+ tgk Fi(k)at, t~ 0)

Adk' F,(k,k')a, ta,.t~0)+ " . (2)

Then substituting (2) into the variational principle for
the energy (of a discrete state) we get the following
infinite set of coupled integral equations for the
g-particle amplitudes F~ containing the energy eigen-
value E:

(Q to F)Ftv+gv Ftr I+g vFtv+1—
(3)

S 07 1 ) 2)

(For simplicity we have not put in the k variables in the
functions Ftv, v, co or in the integral. )

Now since one does not expect to be able to solve the
infinite system (3) some approximation must be made.
By expanding Ii& and E in power series in the coupling
constant g one gets the well-known results of perturba-
tion theory; but since those formulas become increas-
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ingly more complicated to evaluate in partice as one
proceeds to higher orders, this method is useful only for

sufficiently small numerical values of g.
The Tamm-Dancoff method' (of order Ss) consists of

putting to zero all the amplitudes Ii N for N& Np,. one
then has a finite system. of equations I

the (1Vs+1)
X(No+1) truncation of (3)$ to solve. When this
scheme has been applied in the past, one has usually
gone only to the lowest significant order because the
labor needed to solve several coupled integral equations
in several variables has seemed to be beyond the
available resources. (Numerical integra, tion in one
dimension is commonplace, and in two dimensions is
not rare; but for three and more dimensions almost
nothing has been done, even with the great capacity of
modern computing machines. )

Another interesting approximation scheme is that
invented by Tomonaga, ' which may be characterized
by the replacement

Fg(ki)ks, . kg) ~ si(k, )&(k,) .&(kg). (4)

The description of what is allowed here is that any
number of mesons is allowed but they all go into one
space state (mode) described by the function u. One
then easily solves (3) to find the best function e, and
the results obtained include, as special cases, the well-

known strong-coupling (g —+~) solution, as well as the
lowest order perturbation-theory (g —& 0) result. No one,
however, has described a systematic method for im-

proving this approximation.
The approximation scheme we shall study in this

paper may be looked upon as both an extension of the
Tomonaga method and an effective reduction of the
Tamm-Dancoff equations to manageable form. We
start by selecting some convenient complete set of
functions in the (momentum) space variables, N„(k),
and introduce the expansions

Fi(k)=Q C &'&u (k),
Fs(k,k') =g „C "'I (k)u (k'), etc. (5).

As the expansion (2) reduces the single abstract
equation,

to the singly in6nite set of equations (3) for the func-
tions F&, the expansions (5) now reduce these equations
to a multiply infinite set of linear algebraic equations
for the numbers C„„&~).Now in order to solve this
we must truncate to a finite system of equations. The
plan is to set up a sequence of successively larger sets of
these equations, solve for the eigenvectors and eigen-
values of the finite matrices we thus get as approxima-
tions to the infinite matrix of the Harniltonian, and so
arrive at a sequence of approximation values for various

' I. Tamm, J.Phys. (USSR) 9, 449 (1945);S. M. Danco8, Phys.
Rev. 78, 382 (1950).' S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2, 6 (194/).

and we easily find the N-meson probability":

(7)

IC&"&I'= (eN/1V!)e ' e= g'/2(a'. (8)

We would thus expect the variational calculation with a
truncated (at S) expansion (7) to converge well when

N exceeds the parameter e, which can be interpreted as
the mean number of excitations present in the exact
solution. Thus for very strong coupling problems we

may expect much diKculty; however, for the pion-
nucleon problem the effective value of e is less than 2,
and so we are encouraged to proceed.

The second useful simple example is the )L,ee model. 4

Here the operators v~ are so constructed that the lowest
order Tamm-Bancoff equations are exact, and so we
can here test our method for solving the integral
equations by expansion in the mode functions I„.This
test can be carried out explicitly only after we have
specified the functions u„ to be used, and it will be very
important to see that we get a very rapid convergence
to the solution of this simple problem as we employ the
successively larger sets

Np)

Np) Ny)

Qp) Ny) Q2) etc

The number of states we can have, putting N mesons
into n modes, is

(X+I—1)!/(1V—1)!e!;
and this number can grow painfully fast if the maximum

3 This sort of formula may be found in Ref. 2.' T. D. Lee, Phys. Rev. 95, 1329 (1954).

quantities of interest. The crucial question is, "Will
these results converge sufficiently rapidly so that we
obtain a good approximation to the true answer before
our computing facilities are exhausted P"

For any particular problem this question of conver-
gence rate will be answered with certainty only by trying
the program, but we can attempt a few general guesses.
The ordering of the numbers C proceeds naturally in
two directions: the total meson number N; and the
mode (space state) indices I, I', We can select
special model problems to study the convergence in
these two directions separately.

First consider neutral scalar theory, i.e., take the
Hamiltonian (1) literally with s& depending only on the
magnitude of k. The different momenta are uncoupled
and we have only to solve the famous problem of a
displaced harmonic oscillator:

aC= (natu+ (g/(2~)il') (a+at). (6)

The exact solution for the ground state can be compared
with the "Tamm-Dancoff" expansion,
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number of modes e is not kept small. We shall typically
work with something like 1% accuracy from about
3 modes

Ke shall now set up the general problem in terms of
creation and annihilation operators for the modes. The
original operators obey

was decided to focus on the variable co rather than k and
so we introduce the normalized variable x:
*=((~—')«"—'» "=(It'+')"' '0~x~'
Now the volume of integration is

[a,(k),a;t(k') j=5,;5(k—k'), (10) (22)

where the i, j subscripts refer to possible internal degrees
of freedom, such as isospin. The three-dimensional
momentum variables k will be described by a complete
orthonormal set of functions I 2, and we de6ne

and we also want the boundary condition

f„~(k)—& constk'
k~O

(23)

ol

A„, ;= dk u„,„*(k)a,(k)

g;(k) = p N„i„(k)A„g„,.

so we construct f„~ as follows:

1
f-/(k) = (~—1)"'+"'(fl—)' "' ""f-~(x) (24)

This preserves the canonical commutation relations,

[An/~', A. vm t)=&',&an &~t 4m . (12)

The free field part of the Hamiltonian is now

x~ ——P P o)„„.&'&A„),tA );,
2mi nn'

where

having made use of (~—1)'" - constk. The ortho-
normality integral is now

k'dk f„g(k)f„.((k)

dxx'+'/'f„, (x)f;/(x) = h.; (25)

k'dk f.)( k)~ ( k) f„.(*( k) (14) and so we use Jacobi polynomials' for f„&

(—1)&(2g+l+3)V2 d"

and we have taken a separation in spherical polar "'
~txt+j/2

coordinates

and
~, , (k) = I',.(0,,)f„,(k),

(o(k) = (k'+p')'/'

(15)

(16)

We are using units of A =c= 1, and the meson rest mass

p, taken as the unit of energy, will frequently be set
equal to 1. The interaction term in the Hamiltonian,
for a given partial wave l'm and internal component
will be taken as

The resulting formulas for cv„„.«& and G„«) are given
in the Appendix. There is of course nothing unique
about the above choice of mode functions; any complete
set will do. That these "decorated" Jacobi polynomials
worked quite well can be judged by the Lee model test
mentioned above. Shown in Table I are the variationally
computed sequence of eigenvalues E, obtained as
approximations to the solution of the integral equation,

lmi
1

(2') 3/'
0(k)

(2(o(k))'/' 2l+1

—1/2
g' ~ k2dk

ca(a —E)
(27)

G„(2)—
"k'dk f.i(k) k'8(k)

0 (2l+1)'/' (M(k))'/'
(19)

Next we fix the cutoff function 0 to be a step function

&[I /-*(0, ~)~'(k)+ I/'/-(0, ~)~"(k)3 (»)
=(g/2~)P (G„&'&A ( ~+G„*&'&A„g„;"), (18)

where

by restricting the mesons to 1, 2, 3, 4, 5, 6 of the space
modes given above. In the table the single asterisks
indicate, for each value of g and E, the point at which
we could stop with less than 1% error, and the double
asterisk shows the 1/10' accuracy level. It is interesting
to note that the poorest convergence occurs for the
small g values (where perturbation theory could be
used); and we may expect that for the problems of
interest 2 or 3 or 4 of our mode functions will suKce.

The next model problem we looked at was the charged
(20)=0, k)K ~ See, for example, W. Magnus and F. Oberhettinger, Functions

of3fathemuticul Physics (Chelsea Publishing Company, Near York,
and we must now choose suitable functions „~ k . It tg54'), p. 83.
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TABLE I. Variational approximations to the self energy in the
denegerate l =0 Lee model, using from one to six of the mode func-
tions (24), (26) to describe the momentum distribution of the
meson. The single asterisks indicate, for each value of g and IC, the
point at which we could stop with less than 1% error, and the
double asterisk shows the 1/104 accuracy level.

10 100 1000
g'/4s.

0.01 —0.00212992 —0.0743468

—0.00214220 —0.0817942

—0.00214229 —0.0832270

—0.00214229 —0.0835536

—0.00214229 —0.0836327—0.00214229 —0.0836524

—0.801928 —8.05233

—0.901345 —9.05686

—0.929253 —9.34282

—0.939764

—0.944337—0.946495

—9.45290

—9.50222—9.52630

1.0 —0.185727

—0.186410

—0.286414

—0.186414

—4.44618

—4.50431

—4.50542

—4.50543

—0.186414 —4,50543

—0.186414 —4.50543

—46.0896

—46.5534

—46.55

—46.5581

—46.5608

—46.5618

—462.421

—465.740

—465.747

—465.840

—465.894

—465.917

100.0 -4.57456

—4.57467—4.57467

—4.57467

—4.57467—4.57467

—66.3986

—66.5117—66.5190

—66.5194

—66,5195—66.5195

—671.034

—674.272—674.664
AQ

—674.720

—674.732—674.735

—6705.85

—6742.87—6747.92

—6748.82

—6749.05—6749.)3

scalar theory. Here we had to handle the expansions
both in number of mesons and in modes. At this point
the computer programming becomes quite interesting.
One has many states, characterized by sets of occupa-
tion numbers, and the matrix elements of the Hamil-
tonian have the well-known selection rules which leave
only a very few scattered nonzero contributions. All this
must be arranged efhciently, both regarding time and
storage space, so that one will be able to accommodate
the larger problems to come. The charged scalar theory
gave no trouble and so we proceeded to the semiphysical
problem of the pion-nucleon interaction in the Chew
model' of a fixed nucleon and o k~ P coupling.

THE STATIC MODEL FOR m-N INTERACTIONS

The meson field has three internal charge states
(i=0, +1), and is coupled only in the l=1 orbit
(m =0, &1). The interaction Hamiltonian is now
written

g +1 oo

Kt=—P Q G„&'&Le.„r;A i ~+H.c.f, (28)
g~ m, i=I n=p

'For a thorough discussion and original references see S. S.
Schweber, An Introdlction to Ee4tivistic Qguntlm Field Theory
(Row, Peterson Company, Evanston Illinois, 1961),pp. 372 f.

where cr, r; are the 2)&2 matrices for the spin and
isospin of the nucleon.

0'pp Tp e

/+1 0)

0 —1i

0 +2~
++» r+t

'E 0 0
(29)

0
0—ly ~—1:

In writing down basis vectors for this system we must
specify one of four states for the nucleon, and one of
nine states for each mode (e) of the mesons. This leads
to an enormous proliferation in the listing of the states
compared to what we had in the simpler models dis-
cussed above; but of course there are symmetries in the
problem which should allow us to greatly reduce the
basis needed. The total angular momentum J=L+1/2o
and total isospin T=t+1/2~ are the well-known con-
stants of the motion; but for more than 2 or 3 mesons it
becomes a terribly messy job to construct all the possible
eigenfunctions of J' and T'. We satisfied ourselves with
merely selecting from all possible states (in the m, i
representation) only those with the desired eigenvalues
for Jp and T'p,' this is a trivial counting operation. Then
in the process of constructing the eigenvector of the
Hamiltonian matrix at any step of our approximation
scheme we will get automatically an eigenfunction of J'
and T'. In this way we reduced the size of the basis by
about an order of magnitude, but if we could start with
only correct T' and J' eigenfunctions then we could
reduce the basis by still another order of magnitude. We
did enforce one other simple symmetry: the exchange
of spin and isospin labels, and this saved us almost a
factor of two in basis size.

Aside from the sometimes tricky innovations of the
spin counting problem the programming for this prob-
lem was the same as for the earlier charged scalar case.
In Table II are shown the resulting values for the
nucleon self-energy (lowest 7=1'=st state) obtained
with several sets of limited meson number and modes
available. The parameters used for this data,

g'/4s'=0. 15, E'=5.6 y, , (30)

are close to those which have been used in the past with
this model to give some fair fit of the experimental
scattering data.

There is of course no physical significance to be
attached to the self energy of a Axed particle, but the
eigenfunctions + which also come out of the computa-
tions will be used shortly. The thing to note from the
data presented in Table II is that the approximation
scheme does appear to converge well. The 6nal extra-
polated value of E is thought to be in error by less than
one part in a thousand, This result should be judged in
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New occupations
allowed

n =01234
Total number

of states

1

7
10
13
16
25
40
55
70
85
94

115
166
217
268
319
364
499
634
721

1030
1189

extrapolate---

0
1
01
001
0001
00001
2
11
101
1001
10001
02
3
21
201
2001
12

31
301
5
41
6

0
8.312261
8.334930
8,335515
8.335525
8.335525

11.076151
11,099030
11.099317
11.099326
11.099326
11.099330
12.181440
12.196376
12.196669
12.196676
12.196860
12.669309
12.678588
12.678972
12.874209
12.879702
12.951715
12.992+0.008

relation to its cost, which was in terms of a few minutes
computing time (for production, not including explora-
tion) on an IBM 7090.

With the eigenvector for the one-nucleon state we can
compute some interesting quantities. From the "vertex
renormalization constant" Z, dered by

TmLE II. Results of the nucleon self-energy calculati'ons with
increasing set of basis functions. The parameter values are given
in (30).

to unverifiable approximations, and in this we believe
we have succeeded.

Our pride in this achievement was somewhat shaken
by our belated discovery of the work of Halpern et al. '
These authors had succeeded in getting good results for
the one-nucleon state in this model by using Halpern's
"method of moments. '" That method is a variational
calculation in which the basis elements of the trial state
vector are gotten by successive multiplication by the
complete Hamiltonian operator upon some simple initial
vector. They obtained results nearly as accurate as
ours by going up to five-meson states; they had to
solve a matrix of dimension only 5 (compared to our
dimensions of more than one thousa, nd) but their
matrix elements were quite a lot more complicated to
compute. For this particular problem we probably
should admit that their method was simpler than ours,
but we believe our general approach is more Qexible and
may be applied to other problems where the special
exigencies of the method of moments do not apply.

After completing the bound state problem, we turned
to a meson-nucleon scattering calculation. The Kohn
variational principle' provides the simplest extension of
the Rayleigh-Ritz method for discrete states to the
continuum. We set up the problem of elastic x-S
scattering in the J=T= ~3 state as follows. Starting with
an approxima, te (normalized) wave function 0'p and
eigenvalue Ep for the nucleon (calculated above) we
construct a trial wave function,

L~klll +tan~t ~kill ]Pp+X (34)

to describe the scattering state at an energy
Z= (+,0 pT p%)/(0', 4),

we get the "renormalized coupling constant"

f,s/4tr =Z'(gs/4tr);

(31)

(32)

Here
E=Ep+cp =Ep+ (k'+1)'t'.

A„,„,t&»= tgk'I", (e', qo')b(k" —k')tt;t(k') (36)

Z =0.393 f '/4tr =0.0726 (33)
with

and our numerical results are (for the stated values of

g and E) P Hs(k')
At t;t&'&= — dk'I't (()',9') a;t(k) (37)k"—k'

with an uncertainty of about 1%.
We can also compute the probabilities I'~ for finding

E mesons in the eigenstate +. (Pp is also called the
"wave function renormalization constant" Zs. ) For our
best eigenfunction, with at most six mesons, we find the
probabilities

Hs(k) =1.
The variational expression is then

where
X= 2Xt+ (4rpp'/k') (4 t, (E—II)et),

At=to tanbt/k'

(38)

(39)

(40a)

34% 23% 13% 5% 2% 1—%
for E=O, -, 6.

The average value of lV is 1.6; and this distribution is
rather well described by the simple formula (8).

One could proceed to calculate other quantities, such
as-electromagnetic form factors, but the static model is
probably far from the truth of things and we did not
bother further. Our main objective was to see if we could
solve a "strong infqrgction" problem without recourse

is taken as one of the parameters to be varied and

X=to tanb/k' (40b)

is the stationary result containing the phase shift 8.
'I F. R. Halpern. L. Sartori, K. Nishimura, and R. Spitzer,

Ann. Phys. (N. Y.) 7, 154 (1959).' F. R. Halpern, Phys. Rev. 107, 1145 {1957).
P W. Kohn, Phys. Rev. 84, 495 (1951).This method has been

used together with the Tomonaga approximation by T. D. Lee
and R. Christian, Phys. Rev. 94, 1760 (1954) and also R. J.
Riddell, Jr. and B D. Fried, ibid. . 94, 1736 (1954).
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CONCLUSIONS

10

k cat8333

Ke have been pleased to hand that, within the confines
of the fixed source model, the field theory of strong inter-
actions is amenable to direct and accurate numerical
resolution. This result will encourage us to seek for
effective nonperturbation-theory attacks on more realis-
tic models of the elementary particles.
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APPENDIX

We give here some of the details of the numerical
work. First the integrals of the kinetic-energy matrix
(14) are easily found:

nn (E) Cx x'+'/' j.l (x)f;l(x)L1+ (Q—1)x$

1.0
40

2.D
where

=8„„.+(Q—1)fx„„l')8„, +x„,„+1")(&„+1,;
+g, „(')(&,„.j, (41)

FIG. i. Results of our elastic x-E scattering calculations at four
energies for the J=T=-', state. The parameters used were. IF=5.6 p,
and 'g4/n'= .0 SI. The renormalized coupling constant was calcu-
lated to be f„s/4' =0 0726 and .the point 32./f„s is shown on the
co =0 axis. The vertical height on the points indicates our estimated
inaccuracy in the computed value.

Most of the variation is taken up in the function y which
is constructed in the same manner as was %p, except
that it has quantum numbers Jp= Tp= ~.

Our previous experience with variational calculations
in atomic structure problems was reproduced here: the
scattering problem, as compared to the bound-state
required rather more algebraic and programming
preparation, and the numerical results did not converge
as fast. Nevertheless the work was successful in that we
did obtain phase shifts accurate to about one percent
with several minutes of computer time. At four values
of the energy we obtained the following results: k=0,
)1=0.195(4); k=0.6, )1=0.246(2) k=1.0, X=0.379(2);
k= 1.732, 'A= —4.(1);where the numbers in parentheses
indicate our estimate of the uncertainty in the last figure
given. These values are displayed in Fig. 1, the famous
plot of ks cot!)/o) versus o). A straight line intersecting
the (d =0 axis at 32r/f„s has been drawn to represent the
form of the result predicted by the famous effective-
range formula of the Chew-Low" treatment of this
model. The fit of this straight line to our accurate
values is very good.

"See Ref. 6.

(Q 1) l+1 1

g„(i)—
(21+1)"'

( 2 ) (l/2)+(1/4)

dx x'+'/sf 1(x)~ x+
Q —1)

where

(Q—1)'+'
(2n+1+-,')"'

(21+1)"'

(n+ 1+n2+-2, )!x p (—1)-+. &~1(", (43)
ns!(n —ns)!(1+I+-,')!

1 2
(l) dg xiV+1 I/2 g+ — (l/2)+(1/4)

p 0—1
(44)

can be calculated by the recursive scheme

g~(&)—
Q'+21+4)

Q+ 1) (l/2)+(s/4)

x
Q—1/

(ll/"+1 ——2')Ss/ 1('& . (45)
0—1

1 1 (1+-')'
x..('& =-+-

2 2 (2n+1+-2') (2n+l+-,')

(n+1) (n+1+ 22)

+n +1 (42b)
(2n+1j—',)L(2n+1+ 2) (2n+1+ 2)j'/2

Next the integrals for the interaction term are
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Z= (0—1)/(0+1)
converges well if 0 is not too large. Alternatively we
can use

(772 ,'/ 5—/4—)!—(—1) // 2

m-o 7/2! (—22l —5/4)! (—772+ 221+7/4) (0—1l

with

( 2 ) (zl/2)+(7/4)

+I
&11-1)

F (-', l+5/4) F (l+-', )
I"(szl+11/4)

(."4, (47)

(48)

Thus the only input needed by the computer is the
gamma function of argument one fourth. " (We actually
let the computer generate this value also from an
infinite series; our Ref. 11 is given for the historically
minded reader. )

For the scattering problem we made the choice

o)+o)' fo)(k')
Hs(k') =

2O) fsl(k)
(49)

"The standard source table of log(z!) to 20 decimal places was
computed by K. F. Gauss (1'/77 —1855); see his Werke (Gottin-
gen, 1876), Vol. 3, pp. 161—162.

There is actually much numerical cancellation here, but
double precision arithmetic is a simple cure. We now
need only the first member of this family S~«), and this
we compute from infinite series.

( —-'~—5/4)!(~+-')!
g (/) =g—(&/2) —(7/4) P

' '
Z (46)

-=' (—~/2 —5/4) (~+l+2) .

and the several sets of integrals needed were evaluated
by methods of recursion formulas and infinite series, as
done above.

After these integrals were tabulated, the matrix of
(Z H)—was constructed and the remaining task was the
numerical solution of a very large —but sparse —system
of simultaneous linear equations for the eigenvector at
some given value of E.

The following method worked very well for our equa-
tions of the form

A x=b. (50)

x~o) ~—i.b (52)

The reason that this very economical procedure con-
verged well is that the submatrix u, being made up of
contributions from the "important" states of the whole
basis, gave a roughly good, approximation to the com-
plete problem; the remainder A —a gave relatively
small contributions. Thus the iteration (51) did not have
to move the vector x very far in the S-dimensional
vector space.

(A is an EXP matrix, b is a given X-vector, and x is
the E-vector to be found. ) Take a small submatrix a
of A and compute its inverse a ' by a direct numerical
method such as Gaussian elimination. For u of dimen-
sion 50X50 this takes about a second, while for the
largest matrix A of dimension j.188 it would have re-
quired perhaps an hour. We then construct an approxi-
mation. to the inverse of A (call it A) by adjoining to
a ' the diagonal matrix composed of the inverses of the
diagonal elements of the remainder A —a. We then
iterate the solution

~(i+') 2:«)+A. (k A. ~(a)

starting with


