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I. Introduction

IT IS GENERALLY ACCEPTED that a calculation using a variational principle
will give the “best” answer—for a fixed degree of complexity of the
approximate solution—for some problem which cannot be solved exactly.
But how can one judge how good the result from such a calculation
really is? This question has certainly been asked many times, but to
the best of our knowledge has never been answered in any constructive
manner. Complete and precise answers to this question are, of course,
not to be expected, since this would involve the complete solution of
the (unsolvable) problem; nevertheless, we shall present in this paper

1 This work was supported in part by the U. S. Atomic Energy Commission and by the
E U. S. Air Force under grant AF-AFOSR 62-121 monitored by the AF Office of Scientific
Research of the Air Research and Development Command; and in part by the Advanced
Research Projects Administration through the U. S. Office of Naval Research.
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242 CHARLES SCHWARTZ

an analytical procedure which, at least semiquantitatively, seems to be
both correct and useful.

Now it is well known that for many problems the variational calcula-
tion gives rigorously a bound (say an upper bound) on the exact answer.
This is an advantage of only limited value and does not really aid one
much in deciding just how close the answer is.2 Thus the early history
of the labors involved in some particular problem—consider the ground
state of helium as the best known example—consists of a series of results,
each of which was either “better” than the previous because of one or a
few added parameters, or else more efficient than the previous because
a “wiser”’ choice of terms gave an equally good answer with less effort.
Although most people placed a great deal of faith in these results, no
reliable estimate of the accuracy was to be had. (“With fourteen para-
meters one can certainly fit any function extremely well.””) However,
some people who were more critical tried to point out how very bad,
even impossible, these variational wave functions were (Bartlett et al.,
1935).

The moderate approach, which is certainly recognized by many people
today (see Coolidge and James, 1937), is to steer between these two
extremes and admit that the variational calculation is an imperfect
fitting of some trial function to the exact, but unknown solution. Then,
with a sufficiently (infinitely) fexible trial function it is assumed that
one will converge, in some sense which we do not bother to define
rigorously (see Kato, 1951), to the exact answer; and the appropriate
question is then how rapidly does the answer converge ?

To be somewhat specific, assume we are considering the Ritz varia-
tional principle for the energy of a bound state,

 @HY
E="G M

and suppose the trial function # is represented by a finite number of
convenient functions u, in the time-honored linear manner,

N
¢=2Qm- )}

Then there will be obtained, as a result of varying the coefficients C. |
so as to make (1) stationary, a sequence of energy values Ey which

2 There are methods which will, in some cases, lead to lower bounds, thus allowing a
rigorous bracketing of the exact answer. This generally requires much more labor; and 3
the results, where this labor has been expended (see Kinoshita, 1959), do not seem very |
rewarding. :
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will (by assumption) converge to the correct energy value E; and thus

what we really want to study is the problem: How fast do the increments

Ey — Ey_; go to zero as N goes to o ?

We shall not be able to answer this question exactly; to do so is

probably tantamount to completely solving the original unsolvable
problem. What we shall attempt will be the construction of approximate
formulas for the rate of decrease of these increments in the asymptotic
region N — . In practice one never does reach this region, but the
use of high-speed computing machines, today and in the future, does
allow us to reach regions in which these asymptotic formulas are
probably good approximations. Such a program as we are undertaking,
to allow one to understand the asymptotic rate of convergence of a
large-scale calculation, should be an essential part of current and future
high-accuracy calculations. The virtue of this analysis will be twofold.
First, it will allow one to estimate beforehand how accurate an answer
may be expected from some planned amount of work; thus the wasting
of effort in hopeless ventures would be avoided. Secondly, it will add
greatly to the confidence in a final result obtained if the observed
rate of convergence is shown to be in agreement with some theoretical
expectation.

The beautiful work of Pekeris (1958) marks, for us, the dawning
of the new era of high-accuracy calculations. What Pekeris did was to
carry out the original Hylleraas (1929) program for the calculation of
the helium ground state to an accuracy several orders of magnitude
beyond any previous attempt—in fact, beyond 1000 terms. To many
individuals this work represents the “finishing” of one problem; but
to us it means much more, for it allows the introduction of a whole
new attitude toward elaborate computations, in which “convergence”
is the watchword.

The first essential in talking of convergence rates is to have an orderly
plan of procedure.® That is, one must choose a set of basis functions
to be used and then gradually add more and more of these terms to
the variational calculation in some systematic manner. The old habit of
picking the “best” (chosen by art) choice of a fixed number of terms
is to be discarded if one wants to see how the problem converges. Once
one embarks on any very large-scale program, such an orderly plan of
attack would be natural just from the bookkeeping considerations; this

# We do not wish to imply that Pekeris was the first to plan an orderly calculation, but
his work is the most striking, both for its scope and for its success. The work reported
by King et al. (1958) on the helium ground state certainly looks like an orderly program;

however, this work represents an example of false (misleading) convergence as we have
recently discussed (Schwartz, 1962).
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is, however, essential for any mathematical analysis of the convergence
rates.

Pekeris’ results on helium do show an extremely smooth behavior,
indicating that convergence most probably exists and apparently is
quite rapid. His fitting of the convergence rate as an “almost-geometrical !
series” is, as we shall show, not theoretically correct. This experimental
(numerical) approach to the analysis of a completed calculation is
certainly to be encouraged, however, since when no theoretical predictions
are available, it is the best means of assessing the value of the answers ‘
obtained. Yet such experimentally drawn conclusions cannot be proven
experimentally (and may sometimes be incorrect’) and there will always
be skeptics who can doubt the accuracy of any approximate calculation.
Thus it behooves us to seek some analytical approach that will lead to
at least an estimate of the asymptotic rate of convergence to be expected
in any problem.

In the next section we lay the mathematical background for the
real problem in the form of several simple model problems; following
this, we show how we propose to adapt these simple results to the real
problem of variational approximations to solutions of Schrédinger’s
equation. A number of examples from the study of two-electron atoms
shows that our approach, although still rather coarse in some ways,
does appear to be both valid and helpful.

II. Model Problems: Integrated Least-Square Fitting of Functions

We shall now study the simple and familiar mathematical problem
of the “best” fitting of some given function F with a fixed number N

of basis functions
w,, n=012" ,N—1.

We require that the mean square error

dv 3)

should be a minimum under variation of the coefficients C,. The
solution is easily found if one starts with, or arrives at by means of a
suitable linear transformation, a set of basis functions which are ortho-

normal,
f Uty A0 = 8pr 4)
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Then the appropriate choice for the coefficients C, is

C, — f Fu, dv (S)
and the irreducible value of J (the error at the Nth stage) is
IN) =3 Cz. (6)
n=N

Thus the rate of conver
C,gotozeroasna
C,* ~ an (for some paramet
rate of convergence; and
Co? ~ 1/n®, which is the slower “power” rate of convergence.
Combinations of these two forms will represent all our present findings.
For our model problems we shall consider functions of one variable

Oérgoo,

representative of the radial variable

n the three-dimensional Schrédinger
equation. The volume element (or

metric) will be of the general form

dv = ro dr ; 7

1 be chosen to be of the form of powers of r

with an exponential envelope, again representative of the common
forms used for atomic wave functions.

The appropriate linear combinations of
give the ortho

It will be most convenient for

and the trial functions wil

o) = dgons SPL= B+ 51 — )

(1 . S)‘”'l ’ (8)
where the symbol (s*: means “the coefficient of s* in the following
expression.” The orthonormality integral is :

h a —_— . m. 1
fo Un(r) (1) 7 dr = A, A (57 (¢ Ty e

X f: r%dr exp [(I—_krf)l\(l—it)t)]

n. (4m. al
= AnAm(S : (t : m , (9)
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which is obviously zero unless m = n and is made equal to unity with
the normalization

+ a)l 112
Anz[—é’;—ﬁgl—] : (10)

The scale parameter k will be left free for use as needed.

With this basis, we shall now take particular functions F(r) and
calculate the expansion coefficients C, according to (5). The manner
of grouping and of adding terms will be the natural one in which at
the Nth step, we take all polynomials of order n < N.

A. SmooTH SHAPE FITTING

First we consider a function F which is infinitely differentiable over
the entire region 0-«, has a power series expansion about the origin
(as do the trial functions u,), and has also an exponential decay at .
Here the fitting functions have the easiest job of simply fitting the
particular shape and will show the fastest rate of convergence. For
example, consider the simple choice

F =rbe /2, (11

The integral (5) is easy and the result is

= n (@ + )l (1 — s)p 204041
C, = A (™ [h k) — (h — k) sperort

(12)

Since the choice & = k makes the problem too easy and uninteresting,
we avoid it. The foregoing result is easily expanded and we get the exact
solution in the form of a finite series,

nl kott ]1/2( 2 )Hmi S Bl (atb+n—i)

C"z[(n+a)! htE DT —oi@ —9)

i=0
x (%—l—i)' . (13)

Now because we are really only interested in the form of C, for very
large n, we make the approximation

|
Qi;r&gnz (n>x), (14)
and thus have
2k1/2 ja+l 4k b 5 — k1
~ ba
Cu [h+k] [kZ—hZ]" +b[h+k]' (15)




g, |
act |
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The final rate of convergence for this model problem is then

C,2 ~ no+2o (h;k)zn.

k+E (16)

This is the exponential convergence which we believe is typical of all
problems wherein the trial functions are similar in kind to the function
to be fitted, but are different only in details of the shape. Whether this
is considered fast or slow convergence in a practical sense depends on
how close % is to %, and to a lesser degree on the values of  and b. The
convergence will be slowest here when one tries to fit a sharply varying
function with slowly varying trial functions (h > k), or vice versa.

B. BeHAVIOR AT THE ORIGIN

Suppose the function F has a power-series development about » = 0
which starts off with some leading power less than that of the trial
functions u,. It will then take a great many of the higher terms in the
expansion to build up the proper initial behavior and the convergence
will not be very fast. This situation may be typified by repeating the
problem of Section II, A, but with the positive exponent b replaced by
a negative value, say —d. For convergence of the integrals, it is required
that @ — 2d is nonnegative. The integral for C, is then of the same form
as Eq. (12), but the expression to be expanded is

1
(1 —9)3[1 — s(h — k)/(h + E)]o-a+

(17)

It will now be legitimate to make the simplifying assumption that
h = k. This may be justified by noting that the coefficient of s, for
very large n, is governed by the behavior of the expression to be expanded
near the limit of convergence (ie., s = 1). Clearly, in the foregoing
expression the term (1 — s)~¢ varies most rapidly in this region. With
this choice, we have

C[alAE (@A) (n 4+ d — 1)!
" [(n + a)!] kel (d — 1)

o _ (a—a) 1
n® (4 — 1)1 Rhotd-d yha-ai1’ (18)

and the convergence rate is

—2d.
C,% ~ 1/no-2042

(19)
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It is interesting to note that this result is dependent only on the
nature of the integral [F?dv, and is independent of just how many
initial powers the fitting functions u,, are lacking. The worst case, a = 2d,
converges so slowly as to be probably useless for most situations; the
remaining error after N terms is 1/N and it is generally wholly un-
rewarding to pursue such an ill-chosen enterprise that shows this
behavior.

A special case is that function which has a logarithmic singularity

F =P Inre*2, (20)
Here we get, after a scale change in the integral,

C, = Afs™ %a%fli f “ratvdr el (rfR) +In (1 —9)]; (1)

and again, since we are only interested in very large n, we can ignore
the first term in the integral and get

| 1 —éa
Co ~ % (: (1 —sPIn(l —9). (22)
Now we can write
d
oy — = — — 5P
(1—sPln(l —s) == (1= (23)

The second half of expression (22) is then

Bl blm—b

nl (b —n) n! = (=1, (24

(57, etc. = % (—1»

if we assume b is an integer. Finally, in the large 7 limit,

bla+b)! 1
~ (—1)0+1
G~ (=1) Era+dir platvir’ (25)
and the convergence rate is
Cz2~1 /na+2b+2J (26)

This is essentially the same as the result (19).
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C. BEHAVIOR AT INFINITY

Suppose the function F does not die off exponentially as r goes to
infinity but, say, as some negative power of r; then it will again take
many terms of the u, series to build up the proper tail of the function
and we will find again the slower power rate of convergence. Consider
the choice

1

F=—
(ro +1)0

27

wherein we have had to avoid any singularity at the origin in order not
to confuse these two separate problems. We will need the restriction
d —a — 1 = 0. After a scale change we have

dx x® e=%(1 + s)¢-o-1
o [(1+98)x + (1 —s)x]?

(%o = %k”o) ,

Co = Ap(2[R) 170 (sm: (28)

which can be written as

B " n.(d—-l)! d \d¢-a-1 © dx x¢ e
C, = A, (2/k)*H~% (s -—7!—(— dxo) X fo [(1 + s)xp + (1 — s)x]e+?

_ @ =Dl d )l (2 deatet [ x— x|t
= A.2/Ry a! (_ dxo) nlal Jy (v + %)%+ (x + xo) '

(29)
Another scale change yields

- aria (=Dl +a)l = dyylemv iy — 1\
Co = 4,(2/k) (a2 n! fo (v + e+t (y + l) : (30)

This integral over y will get significant contributions from only two
regions as n gets very large. The first region is near y = 0; here we
can approximate

%Y

(;%)" ~ (—1)r e-2nv

~ 1 s
€2y

The first portion of the integral is

~ (=1 ’——(d(;n )i)! . (32)
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The second region is at some y > 1 and we approximate

_r 1
y+ 1y
( ) (33)
(y — l)n ~ o2y
y+1
The remaining integral is
=L o—wev p-2n/Y | 34
|5 (34)

which is peaked about a point y = (2n/x,)'/2 and has approximately
the value

(027174 exp [—2(2nag) 2] . (35)

The first term (32) will dominate at very large # and is the result of
the long tail of the function F'; the second part (35) is probably due to
fitting the shape in the region of r = 7, and may be the dominant
term for some intermediate region of the # series if kry is small. This is
an example of the compound structure of the convergence that may
often occur.

Putting back all the factors, for this problem we have for n — «

C, ~ ((d — 1)!)2 (—1)» (_7-_)“1_2‘1 1 (36)

al E1/2 ni—ar2’

and the final convergence rate is

C,% ~ 1/n%-a,

(37)

Thus an expansion of a function F which decays as 1/r (with volume
element dr) will show the minimal convergence rate ~1/n2.

D. OTHER DISCONTINUITIES

We have seen in the foregoing examples that the slower power rate
of convergence results when the trial functions do not have the same
analytical behavior as the function being represented. This conclusion
is generally correct, not only for the end points of the region, but as
well for any interior point where the function is not infinitely differen-
tiable (as it is assumed the trial functions are).

T
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The well-known expansion of the delta function (with unit metric,
a = 0) gives the expansion coeflicients

Co = [ talro) 8(r — 70) dr = walro), (38)

where 7, is the position of the singularity. If this expression is treated
to some number, say b + 1, of partial integrations, we have

Jarl() s =l (=) ) =m0 )

The mean value of u,(r,) is of the order of magnitude unity, and the
mean value of its (b + 1)st derivative is of order #°+1. Thus the expansion
of a function F which has a finite jump in its dth derivative will have
expansion coefficients of the order of magnitude

C= [a|(] )H1 8 — o) walr) ~ 11, (40)

and therefore the convergence rate is
C2 ~ 1/n+2 (41)

The boxed results of this section on model problems are probably
very well known to a number of people, and can probably be found, in
one form or another, in some mathematics texts. The analytical tech-
niques used are really quite simple; and it is our chief purpose to
encourage more people, working at computational problems in quantum
mechanics (and other fields), to think along these semiformal lines.

III. The Real Problems: Variational
Approximations to Solutions of Schriédinger’s Equation

Given the Hamiltonian operator H for some particular system, we
are really interested in evaluating the quantity

J= [¢#4E-H)$do, “2)
and making it stationary with respect to variations of the trial function ¢.

This is the sense in which the variational principle tells us how to get
the “best” approximation to the exact eigenfunction ¢. The form (42)
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describes, with appropriate specification of the asymptotic behavior of
the wave function, both the Rayleigh-Ritz variational principle for the
discrete energy eigenvalues and the Kohn-Hulthen variational principle
for the scattering problem. The question we wish to investigate is the
following. If the trial function ¢ is expressed in terms of N basis func-
tions in the standard form

N-1

$ = 2 Ctty, (43)

how rapidly will J converge to its correct value as /N goes to «? No
complete answers to this question are forthcoming, but we shall now
show how the analysis of the preceding section can be used to obtain
at least qualitative answers.

Since, by definition,

(B—H)y =0, (44)

we can rewrite [ in the form

J=[@—E—H) G —Pdo. (45)

This is now in the form of a generalized least-square fitting problem (3).
The operator (E — H) will be looked on as a generalization of the
metric of the fitting problem. There are two obvious difficulties in the
job of evaluating the stationary value of J. First, the function ¢, unlike
the F of our model problems, is not known. Secondly, the appropriate
basis functions u, which are orthonormal with respect to the operator
E — H are not known; these are in principle, of course, just the unknown
eigenfunctions of H, one of which is the particular s under study.
What we have learned in the foregoing is that the asymptotic rate of
convergence is controlled by the singularities (broadly speaking) of the
function being fitted. All this information—behavior at the origin,
behavior at infinity, existence of any discontinuities—is contained in
the Hamiltonian, and we simply have to pick these clues out by inspec-
tion. The procedure we advocate is as follows. The complete expres-
sion (45) is to be butchered into several sections, each containing selected
parts of the operators and selected regions of integration. The conver-
gence rate of each section will be separately analyzed as the simple
problems of Section II; and then the most slowly converging part will
be taken as describing the asymptotic convergence rate of the entire

problem. This is certainly not any sort of a rigorous solution to the |
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general problem; but, if some care is exercised, we expect that this
procedure can give the correct rate of the convergence, or, at the very
least, it will give some “feeling” for the convergence rate. The numerical
coefficients of the results of our model problems should certainly not
be used for more than an order of magnitude indication.

The most obvious partitioning of the terms in (45) would be a breakup
into the unit, kinetic energy, and potential energy operators,

JE) = [ (4 —$)* B¢ — ¢ do,
h2
HT) = —5— [ —9)* Vg — ) do, (46)

JV)y= [t —9)* Vg — ¢ do.

It may then be relatively easy to find the appropriate orthonormal
basis for each of these least-square fitting problems.

One danger must be pointed out. Since the foregoing breakup is
arbitrarily chosen, one could imagine another in which two terms, each
of a very singular character, were made to appear in the separated
problems when they might even exactly cancel each other in the complete
problem. (This leads one to suspect that the convergence rates calculated
may represent upper bounds, but this point is not at all clear.) The rule
one must follow to avoid this danger is that the separation is made in
order to allow us to focus only on those singularities of the complete
problem that are not precisely represented by the trial functions.

As an illustration, consider the radial wave function for a state of
angular momentum /. The radial operator from the kinetic energy is

1 42 (141
- i;‘;—) . @7)
If one were to study these two terms separately, one would get a spurious
result, as long as the trial function was designed to have precisely the
correct behavior in the region 7 — 0, namely, ¢ ~ 7% Thus we may
say that only “uncompensated” singular properties are to be studied.
If, in this illustration, the trial function had an initial behavior starting
at some power higher than /, then it would be correct to study either
of the above terms separately to arrive at the convergence rate charac-
teristic of this particular error.

We readily admit that the procedure we have just outlined
gives something rather far removed from a rigorous answer to the
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question of convergence rates; there appears to be at least as much art
as science involved in the program. But the problem, in its entirety,
is a very hard one; and we believe there is much to be gained from even
so crude an approach as ours. In support of the merit of these prescrip-
tions we now present several interesting examples drawn from large-
scale computations on the two-electron atomic system. The (subsection)
listing, A, B, C, and D, of these examples is the same as that of the
corresponding model problems of Section II, with which they are
represented. e

IV. Examples

Pekeris (1958, 1959) has carried out very extensive computations
using Hylleraas-type trial functions for the ground states of helium.
The form of the trial function is

¢ = exp [—e(r, + 73)] 2 Crmn?12'T1"72" (48)

where the exponential parameter € is not varied but fixed at the square
root of the negative of the energy cigenvalue E (in atomic units). The
order of approximation is designated by the value of the parameter w
which gives the maximum poWwer, 1 + m + n, used at each stage of
the work; this replaces the index N previously used.

A. Pegeris’ CALCULATION OF THE 23S STATE OF HELIUM

The ground state of orthohelium is most simply described as a
hydrogenic (1s, 2s) configuration and the simplest wave function would
have the form

b ~ exp (—Zym) exp (— & Zurs) (1 — % Zyrs) — (exchanged)  (49)

where Z; and Z, are the screened nuclear charges, approximately equal
to 2 and 1, respectively. The form (48) used by Pekeris forces the two
radial coordinates to have the same exponential coefficient, and this
is a very poor starting approximation, particularly for the 25 part. The
major job of the power series will then be to correct this exponential
behavior and we shall interpret this as an example of what we have
called smooth shape fitting.

Foley and Traub (1958) have carried out a good variational calculation
for this state, varying separately the exponential coefficients of r; and 75,
and they find the values Z, = 2.06 and 3 Z, = 0.60, while Pekeris’
value is ¢ = 1.475. The value for our exponential convergence factor
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is [(h — R)/(h + k)]* = 0.18 for the 2 part, and 0.027 for the 1s part.

he complete calculation, of course, mixes up both these parts, but
since the 25 part is more slowly converging, we will ignore the other,
The other parameters that go into our formula (16) are @ = 2 and
b = 1. Since the pertinent region is at large 7, we will look only at the
E term (unit operator) or the T term (second derivative on r). A small
correction should be made because of the fact that Pekeris’ specific
choice €2 = —F causes these two operators to cancel, in their leading
terms, for 7 — «; thus the value of a should be reduced by one: a = 1.
Our prediction for the convergence rate is thus

C.? ~ w¥(0.18) , (50)

TaBLE [

COMPARISON OF PREDICTED AND OBSERVED CONVERGENCE RATES IN PEKERIS’ CaLcuLaTION
OF THE 2%S STATE oF HELIUM

Pekeris’ Exptl. Theoret.
@ [Bw) ~ Bw — 1)] x 101 ratios «%0.18)% x 101 ratios
11 855000
12} 827927 200000 } 1101000
13 0.0142 45700 0.0119
14 10300
15} 11792 2275} 13070
16 0.0120 497 0.0103
17 107.4
18 } 142 230 } 1353
19

4.87

This formula is compared with the differences of Pekeris’ results
E(w) in Table I. Unfortunately, Pekeris gives results for only every
third value of w, and so the comparison cannot be made as finely as
we would wish. The things to look at are the ratios of succeeding
differences; these are seen to be fairly well represented by our formula(50).
The small error is in the sense that the numerical results converge
slightly more slowly than (50) predicts. For comparison, the formula

C,2 ~ w4(0.18) (51)

gives the ratios 0.0150 and 0.0126 which are actually closer to the

observed ratios, and is in the direction of predicting slightly too slow
a convergence rate,
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We do not consider our “error’” of approximately one unit in the
power of the predicted decay law (50) to be a large error, considering
the crudeness with which we have reduced the complicated two-electron
problem to a simple model problem. An estimate of the numerical
coefficient of the theoretical prediction (50) may be obtained from
(15), with a factor to normalize the wavefunction (49); and we find a
result of approximately }, which is quite consistent (we would be
satisfied with an order-of-magnitude agreement here) with the relative
magnitudes of the increments shown in Table I.

It is typical of many problems that at the early, or even at inter-
mediate, stages the convergence is governed by a general shape-fitting
problem and appears exponentially convergent. But it may often occur
that eventually this part of the problem is well satisfied and the conver-
gence settles down to a slower power rate in response to some weak
singularity that contributes only a very small part of the entire problem.
This circumstance probably does apply to the 23S state, as we shall
see in the next section. .

B. Pexeris’ CALCULATION OF THE GROUND STATE OF HELIUM

The ground state of parahelium, described as the 1s® configuration
of hydrogen, is not expected to have the severe shape-fitting problem
just described; thus we must look farther to find a singularity in the
problem which will dictate the asymptotic convergence rate. Fock
(1954), and also Bartlett (1937) have pointed out that a formal expansion
of the helium wave function will show a weak logarithmic singularity
at the point where both electrons approach the nucleus simultaneously;
we would like to explain the convergence rate of Pekeris’ calculation of
the gound state in terms of this behavior.

Fock showed that a power series expansion of the helium wave
function about the origin would have the form

p~1 — Z(ry +15) + Er, + (Csinacos @ + Decosa) RInR + -+ -, (52)

where the linear terms are very familiar, but the logarithmic term is
something new to be worried about. R is equal to (r,® 4 75%) and we
have evaluated the constants to be D = 0, C = (Z/3) [(1/=) — §] =
—0.121 for helium. The angle « is such that Rsina = 2r,7, and 6 is
the usual angle between the radial position vectors of the two electrons.

Fock does his analysis in a four-dimensional space where R is the
radial coordinate and the volume element is R*dR/R. For our fitting
problem we would include the potential energy term ~R-1/% and then
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P4

from (26) with the parameters ¢ — 3,6 = 1, weget the convergence rate

C,2 ~ 1/ 53, (53)

This convergence rate is what we would expect if the trial function was
a power series in the variable R, but is unrealistic since odd as well as
even powers of the coordinates r, and 7y are actually used in the calcula-
tion. Thus the convergence rate should be faster than indicated by (53).

Another extreme would be to consider working in the six-dimensional

space spanned by the two vectors r, and ry. Here the radial coordinate
will be called p,

p=(r + 12 = R, (54)
and the parameters in the fitting problem are rather different;
a=4,5=2,

and we get from (26) the convergence rate
C2m~ 1m0, (55)
But this may be expected to be too fast a convergence rate since the

trial function used does not have all the pieces of the odd power of p.

TaBrLE IT

APPROXIMATE FITTING OF THE OBSERVED CONVERGENCE RATES IN PexERIS’ CaLcuLaTioN
OF THE 11§ STATE oF HEeLium

Pekeris’
[E(w) — Exptl.
@ E(@—1] x 10° ratios (10/w)? Ratios (10/w)? Ratios
9 489 2.32 2.09
0.467 0.431 0.478
10 233 1.000 1.000
0.502 0.467 0.514
117 0.467 0.514
0.53 0.498 0.543
62 0.233 0.279
1.06 0.984 1122
0.122 0.159
66 0.068 | 0.229 0.095 } 0.313
021  0.039 0.204 0.059 0.249
0.0233 0.0372
14 0.0143 } 0.0467 0.0244 } 0.0779
0.3 0.0091 0.267 0.0163 0.316
0.0059 0.0112
5 0.0039 } 0.0124 0.0078 } 0.0246

0.0026 0.0056
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A correct analysis of this problem must be done working with the actual
three coordinates used in the Hylleraas expansion and this is quite
complicated. We shall have to content ourselves here with noting that
the numerical results of Pekeris’ calculation, shown in Table II, converge
at a rate well fitted in between our two very rough estimates (53) and (55).

Further evidence for the presence of the logarithmic term in (52)
can be found from Pekeris’ observations of the numerical coefficients
of the linear terms in this expansion. Again we overlook all angular
problems and just consider the one-variable fitting of 7% In re~1/2*" by
Laguerre functions with a volume element 7¢ dr. Let F(r) stand for the
function as represented by the best fitting with N terms; we want to
look at F(0) and F(0). As N — =, these both go to zero, and we easily
find the rates

F(0) ~ ﬂil_)k_gfiz_)_ N-2, (56)
and
£(0) ~ (—“;kfﬁ N1 (57)

It should not be surprising to find that F'(0) converges so slowly, since
F”(0) must diverge. The errors, noted by Pekeris, in the coefficients T
and U of the linear terms of (52) do indeed decrease at the rate 1 [w
and the numerical value of these errors is of the order of magnitude
of what we predict here.

These logarithmic terms will appear in the triplet states only with a
higher power of R. Thus only at extremely large w values, after the
shape-fitting problem discussed earlier has been satisfied, will one
expect to see a power convergence rate for those states. Then it should
be a more rapid rate than that for the singlet states.

C. Zero-ENERGY ELECTRON-HYDROGEN SCATTERING

For s-wave scattering at zero energy it is well known that the asymp-
totic form of the wave function for large distances from the scattering
center is

gp~1—Afr+ -, (58)

where 4 is the scattering length and the succeeding terms depend on
the rate at which the scattering potential dies off. O’Malley et al. (1960)
have pointed out that for the case of a potential which falls off as 1/r
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the next term in (58) should go as 1/r% In the scattering of a charged
particle from a neutral system the same conclusion holds, the 1/r4
potential being a representation (in the adiabatic approximation) of
the effects of polarizing the target. In recently reported calculations
(Schwartz, 1961), the Kohn variational principle was applied to calcula-
tions of electron scattering from the hydrogen atom. The trial function
used was of the form (at zero energy)

$=1—Adlr+3 Cu,, (59)

where the u,, were exponentially damped polynomials in the coordinates 7.
The convergence rate of the results was very slow; this may be explained
as the problem of fitting the 1 /7* tail of the correct 4. According to our
formula (37), with the parameters g — 2, d = 2, we expect the conver-
gence rate

C,2 ~ 1/n? . (60)

Formula (60) does roughly describe the rather limited data on the
observed rate of decrease of the increments in the variational calculation
of the scattering length 4 (see Fig. 1). On the basis of this fit an extra-

T =TT T TIrT T N T 77

- n-! n-2 n—4

.

T
[ .1
—
L ]
[ ]
1

FTTTTT

Singlet Triplet 7

1 101 10
n

Fic. 1. First calculation of e-H scattering lengths. Vertical bars indicate numerical
uncertainties. Straight lines whose slope represents the simple power rate of convergence

_ 1/n? are drawn for comparison.
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polation was made according to the general formula

ST~ -N Ty, T~ (61)
n=N P_l

An improved calculation was carried out in which the 1/r* part of the
wave function was explicitly represented. These results converged much
faster and proved the approximate validity of the above extrapolation.
The convergence rate of these improved results should be governed by
the next terms in (58) after those accounted for exactly; this would be
a 1/r3 term from the quadrupolar polarizability and would lead to an
expected rate of convergence (¢ = 2, d = 3)

CE~1nt, - (62)
which is again in reasonably good accord with results of the computations

(see Fig. 2) and helps reassure us of the accuracy of the final result
obtained.

T T T T 1777171 T T T T T

rTT1Tl

T TTTT

T

Singlet

|

Ll
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Triplet

|

1

Fic. 2. Second, improved, calculation of e-H scattering lengths. Vertical bars indicate
numerical uncertainties. Straight lines whose slope represents the simple power rate of

101
n

convergence 1/n? are drawn for comparison.
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D. ANGLE-INDEPENDENT APPROXIMATION IN THE
Heriuvm Grounp STATE

If a trial wave function for t
using only the two radial coordina
is the angular average of the orig
energy term is 1/r_, where the su
the lesser and the greater of the
has a finite discontinuity in
and is the remnant of the s

he two-electron atom is constructed
tes 7, and 7,, the effective Hamiltonian
inal one and the interaction potential-
bscripts <, > designate, respectively,
two distances 7, and 75. This function
its first derivative at the point 7, = 7,

vative,

If one uses as trial functions the completely continuous basis functions
e exp [—k(ry +1,)] (63)

then a convergence rate according to some power law is to be expected.

I T T T 171717 T T

T rIrT

T TTTT

T T
——

Yirpr,) Virer,)

| . | 1
1 101 10

n

F1c. 3. Two calculations of the angle-independent approximation to the helium
ground state. Vertical bars indicate numerical uncertainties. Straight lines whose slope

represents the simple power rate of convergence 1 /n? are drawn for comparison.
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Allowing for the fact that we are expanding through the Laplace
operator, we predict from (41) the convergence rate
C2~1/n8. (64)

The results from such a variational calculation are shown in Fig. 3
along with the results of a second calculation using the more flexible
basis functions

r"rsmexp [—k(r, + 15)] . (65)
(These results have been previously reported by Schwartz, 1962.) It
appears that the first problem converges experimentally as 1/n* and the
second as 1/n®. We are unable to account for this apparent error in our
analysis; but again we will be satisfied at seeing that we have at least
some qualitative feeling for the convergence rate in this problem.

V. Further Calculations on the Two-Eleétron Atom: The
[-Expansion in the Angle

We now consider another problem which, although not essentially
related to variational problems, is concerned with a convergence rate.
Consider the ground state of a two-electron atom described in terms of
an expansion in inverse powers of the nuclear charge Z. The zeroth-
order wave function, in units of ay/Z for length, is simply

do = 2 exp [—(ry + 72, (66)

and we are interested in studying the first-order correction i; defined
by the inhomogeneous Schrédinger equation

(By — Ho) ¢y = (Hy, — Eq) o (67)
where E, = —1, E; = 5/8, H, = l/r;;, and we are using units of
¢2Z%|a, for energy. Of interest is the second-order energy E,, which is
readily obtained once ¢; is known,

Ey = [ $olHy — E) th do. (68)
The problem may be reduced by expanding ¢ in a series of Legendre

polynomials of the angle § between the two electrons.

P = i PV (ry, 75) Pyfcos 0) ,
1=0 ()

E, = Y, ED);
1=0




CONVERGENCE RATES OF VARIATIONAL CALCULATIONS 263
ly2 1oz 1 1 w r<! 5
AR A e T [ — 280 Yo
1 2 T

viLalo,0 Wiy

2 or or re ’

(70)

12
B = [ Sne Gt ),

This two-dimensional problem has never been solved; what we shall
attempt is to get an approximate solution valid in the limit of large [
in order to see how rapidly the series (69) for E, converges. First, look
at the inhomogeneous term in the differential equation (70) for (7, 7).
For large I values the quantity r_!/r_ U jg strongly peaked about the
point 7; = 7, and falls rapidly to zero as one goes away from this point.
This is simply an expression of the singularity of the Coulomb potential,
and it tells us that the important contributions to the function ,®
come from the immediate neighborhood of this point.

In order to look more closely at this region we introduce the Hylleraas
coordinates

S =17, 41, t=—r +7,. : (71)

Setting
h'” = o fils, 1), (72)
we have the differential equation
& g 4 4 4 d A+ + ) d
[d32 +W+sz—t2$_s2—tzﬁ— (s2 — 122 “Zﬁ]f’
(c—12])
BRI "

We now make a further change of variables introducing x == #/s instead
of t. The term on the right-hand side is now

2 (—=x]|)
sUFTaD ™
and we want to use the expansion
1 —x\P x? xt
(m) =exp;—2Px(l+T+T+"')§. (75)

Now, making the final scale change
y=|x|A2, A=+ e, (76)
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we have the equation

i d d & d d d
2 IRty e 2 _ —_ 2 —_—
Pt T Y P E TG

— d_ 4y 2 Ly (L+5)
S —yﬁ(zy@_sf) “W_“("“z)m]ft
__ 2se”exp [—(25%/30) — (29%/528) — - - -]
=y '

In removing the absolute value sign we are left with the boundary
condition

(77

d
@fz =0. (78)

y=0

The variable y has the range 0 — X'/2, but because of the term e
on the right the effective range of f; is only over values of y of order
unity. It is then completely straightforward to make an expansion in
;nverse powers of A:

fl —_ A—lf(—l) _|_ A-—2f(v2) + ce, (79)

The equation of leading order, determining f, is

[—dz— — 4] FEN = 2o (80)
dy? ’
which we easily solve.

U = — Leew(1 +2). 81)

With only slightly more labor, we find the next term

fov = — hern(— hyt — 49—+ dy + B — ot 2t +y B
(82)

The desired result is Ey(l), Eq. (70), which in the new variables is

Lpe e (1 — AR 232 28
By =5 [ e [Ty e it [ 5 5w -
(83)

This also allows of a power series expansion in A and the first two
terms yield our desired result

B — -5 _1 [1 _(1149-/2)2+0(’114—)]' (84)

256 (1 + b
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This shows the rather slow /% rate of convergence which we have
discussed in a recent paper (Schwartz, 1962). The second term indicates
that one does not have to go to very large I values before this asymptotic
formula is usable.

VI. Concluding Remarks

We have seen how a store of simple model expansion problems can
serve as a rough guide for the analysis of the complicated question of
the convergence rate in several problems of real interest. The connec-
tions we have made between the models and the real problems are
certainly far from being at all rigorous, but it is our belief that the type
of crude analysis we have applied does have some considerable validity.
We would be very happy to see this procedure put in a more definite
and proper form; however, for the present we think it will be already
a large step forward if many people, working at such large-scale com-
putations, would learn to think, even in these rough terms, of the
convergence-rate question as an important problem to be faced.

Even if no thought whatsoever is given to an attempt at predicting
the expected convergence of some problem, the “experimental” proce-
dure of finding the convergence rate shown by a set of results is very
valuable. When the results of an attempted computation appear poorly
convergent, one should, rather than simply quitting, start looking back
to find what element of the problem was responsible for the slow con-
vergence. In this author’s experience several poorly initiated computa-
tions have, upon further study of the theoretical aspects of convergence
rates, led to a clearer understanding of the problems and, eventually,
to a satisfying conclusion of the original calculation. In any case, an
attempt to extrapolate one’s results is always worthwhile. This will
generally lead not only to one’s best guess as to the exact answer, but
can also yield an estimate of the residual uncertainty in the final answer
quoted.

One other piece of purely empirical advice may be of use to others:
it seems that quite generally, working with computing machines of
finite numerical accuracy, a poor choice of basis functions (implying
a slow convergence rate) will be signaled by large and rapidly growing
roundoff errors. The best cure for this disease will lie not in any improve-
ments in the numerical capacity of the machine, but requires the selection
of a basis more appropriate for the problem at hand. Thus it appears
that the two problems of getting an accurate (numerical) answer at each
step, and having these successive answers converge rapidly, are strongly
interwoven.
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