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Ground State of the Helium Atom*
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Following a recent attempt to analyze the rate of convergence of Rayleigh-Ritz variational calculations
on the ground state of helium, we were led to re-investigate the usefulness of inserting fractional powers of
the variables into the conventional Hylleraas series. The results have been very successful: With a 164-term
trial function containing half-powers of the variable s=ri+r2, we have matched the best eigenvalue obtained
by Pekeris, who used 1078 terms of the conventional type. Our extrapolated value for the nonrelativistic
eigenvalue is —2.9037243771 a.u. , with an estimated uncertainty of about 1/10' .
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INTRODUCTION It was really no great surprise to discover that, in
general, this asymptotic convergence rate is governed.

by the behavior of the trial functions, as compared

(1) with that of the exact solution, near some singula, r
point of the Hamiltonian. For the ground state of the

was aPPlied to the aPProximate solutions of the two-electron atom it was pointed out that the wea
Schrodinger equation for helium, logarithmic singularity in the formal solution of Fock'

was the controlling factor. This is a term of the form

by Hylleraas. 2 He used the trial function
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where s=rr+rs, zt=rrs, t=rs —r~, and k is another
adjustable parameter; and in the early years of work
on this problem up to eight terms of the series (3)
were used. More recently the availability of fast com-
puting machines has led to the extension of this work

by many people, the best results to date being those
obtained by Pekeris, ' who has used up to 1078 terms
of (3).

In a recent publication4 we have set up a crude, but
useful, mathematical scheme for describing and pre-
dicting the rates at which the results of such calculations
will converge as more terms are added to the series. In
that analysis the Ritz procedure is likened to a least-
squares fitting problem, and one can then calculate
asymptotic formulas for the rate of decrease of the
expansion coefficients C~. The symbol S here stands
for the polynomial order in the simple one-dimensional
problems which one can solve; in describing the three-
dimensional problem, Eq. (3), we take Ã=l+rN+rt
What we then seek to fit is the rate of decrease of
increments of the energy eigenvalues calculated at
each stage (for large Ã)
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' We shall use throughout atomic units: em=ap=1.
' E. A. Hylleraas, Z. Physik 54, 347 (1929).' C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
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in a power series expansion of the solution of the wave
equation, where R=rrs+rss is small only when both
electrons are near the nucleus simultaneously. We first
considered putting such a term as (5) explicitly into
the trial function, but then it seemed that this would
be reasonable only if we could also include the next
term; that is, we wanted to know the complete de-
pendence of the logarithm on the other variables. The
equations given by Fock proved to be just too compli-
cated for us to solve, and so this approach was
abandoned.

As an alternative, we sought another set of trial
functions, larger than (3), which would give more
freedom in the region where both r1 and r2 go to zero.
Previously, Kinoshita' had allowed some negative
values for the exponents 1 and m, and Schwartz' had
included fractional values for these exponents. With a
few half-power terms, Schwartz' obtained results
slightly better than those from conventional series of
the same size and this suggested the possibility of
further study; but the total number of terms used was
so small that one could not meaningfully speak of
measuring the convergence rate.

Our analysis of model convergence problems4 suggests
that the use of fractional powers may be very helpful.
Thus, the fitting of a function which near the origin
behaves as

r' lnr,

in terms of polynomials of degree X, st~(r), with a
volume element r dr, gave expansion coe%cients

5 V. A. Pock, Izv. Akad. Nauk SSSR Ser, Fiz. 18, 161 (1954).
6 T. Kinoshita, Phys. Rev. 115, 366 (1959).

H. M. Schwartz, Phys. Rev. 120, 483 (1960).
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C~= r'dr r' lnrg~(r) r'dr up/(r)
TABLE I. Ground-state energy of the helium atom as computed
with the extended Hylleraas series containing half-powers of r&+r&.

1/+)a+b+1 Number Energy
oi terms (in atomic units)

Ratios of
successive

Differences diGerences

If we were now to use instead polynomials of degree E
in the variable r&, a simple change of variables in (6)
shows that one will get a much faster rate of decrease
of the coefficients:

1/g a+2b+i (7)

RESULTS

This line of reasoning led us to expect that we might
improve on Pekeris results simply by inserting half-
powers of the variable s into the series (3). Of the three
variables, s, f,, n, this is the one which goes to zero only
when both electrons approach the origin; but the
reduction from the complete three-variable problem
to the simple one-dimensional model is not at all
clearly understood. Thus, one could imagine that the
correct terms to add were half-powers of some more
complicated combination of the coordinates, such as
ri+r2+rts (the pe»meter), or (rP+rs')&, etc. We
therefore, consider that we were, in part, very fortunate
in finding the very successful results, reported below,
with such a simple device.
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The trial functions used were of the form (3) with
3=0, —,', 1, -'„etc.; m=-0, 1, 2, etc. ; v=0, 2, 4, etc. ; and
terms were grouped in order of increasing X=1+m+I.
The single term with /= —„m=n =0 was omitted in
order to avoid any singularity in the first derivative of
the wave function. The parameter k was fixed at the
value 3.5.' For each value of g, the eigenvalue of the
corresponding matrix wa, s found, and the results are
collected in Table I. The computations were carried
out on an IBM 704 computer using arithmetic accurate
to about 20 decimal places. For each given matrix, a
good estimate of the eigenvalue was inserted, and the
corresponding approximate eigenvector was found by
solving the inhomogeneous simultaneous linear equation
system by the method of Gaussian elimination. With
this given vector V, we then computed the scalar
product.

V (L~' H) V, —

and using this as an error indicator we could rapidly
interpolate to the correct eigenvalue. For the larger
matrices, it was more economical to use the inverse
matrix calculated at the first guessed E value for
producing the eigenvectors, by iteration, at all other
stages of the process. The total machine time required
for our largest matrix (dimension 189) was about 2 h.

Pekeris' best result, obtained with 1078 parameters,
was E—2.903724375, and we have reached this value
with only 164 terms of the expanded series. The

Extrapolated —2.903 724 377 1
&1

E'(X)—Z'(X —1) 1/X"', (10)

where p'=2p —1. The ratios of successive differences
of the entries in Table I do show a fair agreement with
the law (10) with p' equal to 14 or 15. This is a very
satisfying con6rmation of our semiquantitative analysis
of the convergence rate problem.

Our analysis of convergence rates is not rigorous,
but it is certainly more than an empirical fitting to the
numerical outputs of a computer. Our uncertainty
figure of 1/10" for E is empirically arrived at (see
Table I), but the confidence to be placed on this figure
depends on how convincing our theory4 may appear,
especially in the light of the results discussed above.
A rigorous statement of the accuracy could be obtained
by computing a lower bound for the energy. However,

quantitative rate of convergence of Pekeris' results
was found to be described by the formula

E(Ã) —E(X—1) 1/&V&,

where p lies between 7 and 8. Our earlier analysis, 4

which was not certain about the values of the parame-
ters u and fi to be used in Eq. (6), predicted p between
5.5 and 10. From Eqs. (4), (6), and (7) we would
expect our new calculations to show that
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all such calculations that have been carried out for
this problem in the past have proved to be very un-
rewarding: at the most recent attempt' the lower
bounds came out about two or three orders of magnitude
farther away from the apparent convergence point
than did the upper bounds. This situation may be
understood qualitatively as follows. The convergence
rate of the upper bound is det;ermined by the ability
of the given trial functions to represent the effects of
the singularities in the Hamiltonian II. The lower-
bound calculations involve the average value of II',
and here the singularities are made more severe; thus
the convergence rate will be much slower.

We have not computed any properties of the helium
ground state other than the energy, since it appears
that the work already published by Pekeris is su%-

'C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

ciently accurate to cope with all practical needs of the
present and near future. The work reported here was
undertaken merely to investigate whether the insertion
of half-powers in the Hylleraas series did achieve the
vast improvement hoped for. We are presently applying
this technique to a calculation of the fine structure of
the lowest 'I' state in helium, since we have already
found that the conventional basis does not there con-
verge rapidly enough to allow a determination of the
fine-structure constant to the new anticipated accuracy
of 1/10s.
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The atomic beam recoil technique has been used to measure the total cross sections for the scattering of
electrons by lithium in the energy range of about 1 to 10 eV. In this method, the atom beam is cross6red by
a modulated electron beam. Recoil results in a scattering out of the atom beam at the modulation frequency.
A phase-sensitive lock-in ampli6er is used to detect the atom-scattering signal, which is obtained here from
a continuously oxygenated surface ionization detector. The angular resolution of the apparatus at 1 eV for
hthium and potassium is approximately 9' and 14', respectively, in the electron polar scattering angle.

The lithium data were normalized to potassium at each energy at which measurements were made, by the
use of two simultaneously operating ovens. As a check on the method, total cross-section measurements in
the same energy range were made for sodium. These are in good agreement with the results of Brode, as are
some absolute determinations made on sodium, potassium, and cesium at several energies. The general shape
of the lithium curve is quite similar to that of the potassium curve over the ranges studied. The lithium cross
section values vary from about 50 to 70% of the potassium values in the 1- to 10-eV region. There is the
appearance of a resonance at about the same energy (1.5 eV) as those observed in the other alkalis.

I. INTRODUCTION

Y means of a modified Ramsauer technique, Brode
performed a series of experiments in which he

measured the total cross sections for the scattering of
low-energy electrons by all of the alkali metal vapors
except lithium, as well as some other metal vapors
and gases. ' His results revealed, first, that the absolute

* Supported by the Advanced Research Projects Agency,
through the Office of Naval Research, the Army Research OfFice,
Durham, North Carolina, and the Defense Atomic Support
Agency.

f From a thesis submitted by J. Perel to the Graduate Faculty
of New York University in partial ful61lment of the requirements
for the Ph.D. degree, February, 1962.

(Present address: Electro-Optical Systems, Inc. , Pasadena,
California.

'R. B. Brode, Phys. Rev. 25, 636 (1925); 34, 673 (1929); 35,
504 (1930);37, 570 (1931),

values of the alkali cross sections were extremely large
(over 10 " cm' in the entire low-energy range), and
second, that the relative shapes of all the alkali curves
were similar, particularly with regard to a strong reso-
nance at energies of a few electron volts. Lithium was
not studied because of the experimental difhculties as-
sociated with the high temperature necessary to obtain
sufFicient lithium vapor pressure, and the particularly
serious corrosive action of hot lithium vapor. '

Early calculations of Allis and Morse predicted a
very Oat elastic cross section vs energy curve for
lithium as well as quite small (~10 " cm') absolute
values, but they did not take either polarization or
exchange into account. ' Furthermore, the resonance

' R. B.Brode (private communication).
'9".P, Allis and P. M. Morse, Z. Physik 70, 567 (1931),


