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Importance of Angular Correlations between Atomic Electrons*
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We present the results of some new calculations on two atomic problems —the correlation energy in the
ground state of 2-electron atoms, and elastic scattering of slow electrons from hydrogen atoms —to show
the relative importance of various angular components of the complete wave function. We conclude that,
as a general rule, the use of just (relative) s and p waves will give quite accurate answers —with only a few
percent errors at most; but to obtain higher precision one should abandon the Legendre polynomial ex-
pansion and use the coordinate r12.

I. INTRODUCTION

&HE central-field approximation is certainly a good
starting point for most atomic problems; it is

necessary now to obtain a thorough understanding of
the finer eBects brought on by the working of the inter-
electron Coulomb repulsion energy e'/r». The well-

known Hartree approximation takes the spherical
average of this interaction and thus allows for only some
radial correlation in the wave function. This method
often gives quite satisfactory answers, and its goodness
(we shall not dwell on the virtue of its simplicity) is
easily attributed to the long-range nature of the force.
Yet e'/r» does have a singularity at small separations
and this implies some important contributions from
states of large relative-angular momentum. The schemes
for improving the Hartree results are generally de-
scribed as "superposition of configurations. "

At the extreme of accuracy are the results of varia-
tional calculations, initiated by Hylleraas, using func-
tions of the interelectron separation r12 in the wave
function. The realm between these two methods has not
until now been well understood —a number of previous
attempts are discussed and criticired in Sec. IV. In this
paper we present the results of some restricted varia-
tional calculations on two famous problems, along with
some semiquantitative mathematical analysis, which

provides a basis for evaluating the relative merits of
these different approaches.
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While E2 (or $1) has never been exactly evaluated, very
accurate approximations have been obtained by use of
the variational expression

E2(LE27= 2(lt oI e'/r»I 01&—4'11Eo—&pIit'1) (3)

Using a trial function of the form

$1 O'P 2 + r12 (rl r2) (rl+r2) (4)

Hylleraas and Midtdalr obtained the value LE27
= —0.157658 )in atomic units (a.u. ) e =2t=tp17; and
we have extended this work to get (with 70 terms)
LE27= —0.157663 which we believe is within 0.000003
of the correct value. We are not interested here in the
value of E2 per se, but we shall use it to measure the
goodness of some approximate calculations to be
described.

The Coulomb interaction between the electrons may
be expanded as

interesting quantities are frequently expressed in terms
of infinite sums

II. SECOND-ORDER ENERGY IN
TWO-ELECTRON ATOMS

e'/r12=e' Q Pt(cose)rt'/r2'+', (rr(r2),
L=O

(5)

The complete problem of the two-electron atom is
too complicated for the analysis we desire to carry out,
so we discuss instead the case where the central field is
strong and expand in inverse powers of Z. For the
ground state we have the well-known terms

where 0 is the angle between the two position vectors.
For each term in (5) the contributing terms

I rt) in (2)
must also have the angular structure given by Pt(cose),
and we may study separately the angular components
of $1 or E2,'

f=fp+$1/Z+ (1b)

E=+ (e'/ o) ( Z'+ ,'Z+E + —), -(1a) Es=g E2(l).
L=O

(6)

where lttp is the (1s') state of hydrogen. The remaining

* Supported in part by the Advanced Research Projects
Administration through the U. S. Office of Naval Research, and
in part by the U. S. Atomic Energy Commission and by the United
States 'Air Force under grant AF-AFOSR 62-121 monitored by
the Air Force OfIice of Scientific Regeq, rcb of the Ajr Research and
Pcvelopmen f Comro@nd,

The central problem we wish to study is the relative
magnitudes of the terms of (6).

' E. A. Hylleraas and J. Midtdal, Phys. Rev. 108, 829 (1956);
109, 1013 (1958).' It was in order to achieve this separation that we chose to
study the second-order energy, and not the complete energy.
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If we delete all terms containing r12 from the wave
function (4), we can then carry out a variational calcu-
lation for Es(0). The result we get for this truncated
calculation isa

Es (0)= —0.12527+0.00005.

Then, allowing terms with r»' as well, we can carry out
a variational calculation for the 1=0+i= 1 parts of L's,

then by subtraction

Es (1)= —0.0263~0.0002.

The first significant result is that the relative s wave
alone gives 80% of the total and the s-p/Ns-p waves give

96% of the total second orde-r energy. Now we turn to the
higher l contributions.

Since the above subtra, ction procedure involves a
growing loss of accuracy, we attempted a, direct attack
using trial functions,

Pi(l) =fpPi(cose)ri'rp' P C,„(ri—rs)'(ri+rs)", (7)

with the following results Lwith up to 30 terms in (7)j:
Es(2) (—0.0034,

Es (3)(—0.00068,

Zs (4)(—0.00009.

(8)

(&o—&o)4'i= (s /rip)A. (9)

Focusing on the region near. r1——r2, it is easily seen that

P C. W. Scherr, J. Chem. Phys. 33, 31/ (1960), has attempted a
direct summation oi (2a) and 6nds Ls(0) = —0.13362, L&'g(1)
~ —0.0103 F2~ —0.14392. We believe there is an error in his
)=0 result,

The obvious remark to be made about these results is
that they cannot be very close to the correct values
since they add up to only about 3 of the difference
between the complete Es and its s+p parts. If the
numbers (8) are given any credence, one is led to the
conclusion that the expansion (6) is rapidly convergent
(a number of people have drawn this conclusion from
calculations similar to ours just described —see Sec. IV);
this conclusion is false.

A closer inspection of our calculations shows that the
additional contributions to Es(l) with addition of more
terms in (7) do not decrease rapidly, this situation
becoming more unpleasant for the higher / values. This
poor convergence may be understood by examining the
behavior of the perturbing term from (5). This function
is strongly peaked around the point r&=r2 and falls off
with the /th power of the distance away from this point.
It may be inferred that the function it i(l) should there-
fore also have a sharply varying structure in this
region; but the trial functions used are individually
smooth, and therefore a great many terms will be
required for an accurate representation.

It is possible to carry out this analysis more precisely
by considering the differential equation which defines

the important part of this equation is just

1 A2 e2

1 2 I Oy

2 2m r12

and the solution of this simplified equation yields our
leading approximation

Pi= (rip/2ap)it p, (10)

then integrating over angles with the fa,ctor Pi(cosg),
we get

Pi(0=
Pi (cos8) r& r& r)

4o
2ap r)'+' 2t+3 2t —1

—Es(t) ~ (45/256)/ 4, (for /))1). (13)

Because of the above arguments about the peaking at
r1=r&, supported by the result that

X)~ 1,
i~co

we believe that (13) is a,ctually the correct asymptotic
result. Ke now state our second significant result:
Attempts to improve on the s- +p-wave results by the
addition of higher / terms will be at best only slowly
rewarding: Particular attention must be given to the
strong radial correlation of the higher / functions.

In contrast with this discouraging outlook for the
Legendre polynomial expansion, we claim that the
Hylleraas terms —odd powers of r» as well as the even
ones —are the right functions to use for high-accuracy
calculations. The results of our first-mentioned calcula-
tion of Ep converged quite rapidly (see Table I), at

The details of. this calculation will be given as part of a general
analysis of rates of convergence in an article to be published in
ComPutational M'ethodv in the I'hysical Sciences, edited by Alder,
Fernbach, and Rotenberg (Academic Press Inc. , New York,
1962), Vo]. 1,

If we set r&=r&(1 5), —this function is approximated
by (for large i and small 5)

—(r/2apt') e "(1+bi)it pPi (cose), (12)

which is peaked around r1= r2 and falls oQ rapidly
outside a distance

~
(~i—rs)/ri~-t '.

Ke can now see two reasons why attempts to represent

gati(l) for large l values by sums of product functions
u(ri)s(rs) will be very slowly convergent. First, is the
very strong radial correlation described by the sharp
peaking of the function (11);second, is the fact that this
function has a (finitely) discontinuous third derivative,
and thus its second derivative, which appears in the
variational principle, is a function with a cusp.

The expression (11) can be put into the variational
principle for Es(l) with a, variable coeKcient Xi. This will

give an upper bound on the true values, and we have
calculated the result4
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Maximum
of

(P+q+r)
1

No. of
terms
in (4)

13

22

34

50

70

-0.1461338

—0.1566022

—0.1574400

-0.1576056

—0.1576467

—0.1576591

—0.1576631

Differences

—0.0104684

—0.0008378

—0.0001656

-0.0000411

-0.0000124

-0.0000040

Ratios of
differences

0.080

0.198

0.248

0.302

0.323

TABLE I. Calculations of the second-order energy (in a.u. )
using Hylleraas-type functions.

radian (triplet) for the t=0 part alone; and they are
reduced to 0.014 and 0.0014, respectively, with the
1=0+i=1 wave function. The scattering lengths have
errors of about 30% for both states using l=0 alone;
and with /=0+1= 1 the remaining errors are only 2%
(singlet) and 0.7% (triplet). The general summary of
these results is the statement that the relative s- and
p-wave parts of the wave function account for about
98% of the correct answers in the singlet states, and
even more in the triplet states.

TABLE II. Values oi X= (tanS)/Rap for singlet S-state e-H scat-
tering, with various restrictions on the wave function.

least over the region we have carried the work. Just how

rapidly this series converges for very large numbers of
terms is not known. The single term r12, aside from being
the simplest single term of this kind, is in fact the most
important term. This one term is, of course, equivalent
to an infinite series of Pl(cosg) terms, but it is just the
right combination to represent the entire slowly con-
verging series given by our result (13). This term ri2
not only gives a good account of the angular correlation,
but also describes much of the radial correlation as well.

To illustrate this last point we have carried out the
variational calculations of E2(1) and E2(0) using for
each the trial function (11) with a variable coefficient.
The surprisingly good result is that in this way we get
99.5% of the s-wave correlation energy and (separately)
94% of the p-wave energy. Keeping this term entire,
we find that the choice $1=Xr»p p yields 85% of the
total E2.

This study was applied to the space-symmetric singlet
S state. For other space-symmetric states the numbers
would, of course, be different but, we believe, the form
of Eq. (13) would still hold; i.e., E(l) ~ / '. For triplet
states the wave function has a node at r1——r2, where the
interaction has its maximum; thus, the strength of the
effects we have discussed will be diminished. We would
guess that for these states the asymptotic rate of de-
crease would be l '.

III. ELECTRON-HYDROGEN SCATTERING

After this 6rst example on the two-electron atom
(bound state for large Z), we now turn to our second
study: low-energy scattering at Z= 1.We have recently
published' results of variational calculations of singlet
and triplet 5-wave phase shifts, using trial functions of
the form of Eq. (4) with the appropriate asymptotic
terms added. Now, considering those results to be
exact, we give the results of restricted calculations which
admit only Ep(cosg) (relative s wa, ves), and only
Pp(cosg)+Pi(cos8) (relative s and p waves) in the trial
function. The collected results are shown in Tables II
and III. The average errors in the phase shifts, for
0.2~kllp~0. 8 are abou't 0.15 iadian. (singlet) and 0.04

' C. Schwartz, Phys. Rev. 124, 1468 (I96l).

0.0
0.2
0.4
0.6
0.8

X(s)

—7.815—14.77
8.048
2.147
1.110

X(s+P)
—6.08—9.60
14.5
2.76
1.49&0.02

X (complete)

—5.965—9.23
15.87
2.845
1.530

IV. DISCUSSION

Any attempt to carry out accurate calculations of the
atomic 3-body problem needs first a choice of the basis
functions to be used. Hylleraas' choice of r1,r2, r12 has
led to the most accurate results by far. The chief reason
for this success, we believe, is that the term r12 repre-
sents in just the correct way the major part of the
contributions of the states of high relative angular
rnornentum. Alternatively, many people' have dis-
cussed and attempted to use the expansion in I egendre
functions,

P(r1 r2) =g 4l (ri r2)Pl(cos8).
L=O

TABLE III. Values of X= (tanS)/hap for triplet S-state e-H scat-
tering, with various restrictions on the wave function.

kGp

0.0
0.2
0.4
0.6
0.8

X (s)

—2.3482—2.4908—3.0467—4.8486—27.24

X (s+P)
—1.7812—2.269—2.842—4.41~0.02—17.6&0.3

X (complete)

—1.7686—2.260—2.833—4.40~0.01—17.2~0.6

6 The 6rst attempt along these lines appears to be the work of
P. J. Luke, R. E. Meyerott, and %.W. Clendenin, Phys. Rev. 85,
401 (1952).

7A recent discussion of several results, along with further
references may be found in the paper of J. Linderberg and H.
Shull, J. Mol. Spectroscopy 5, I (1960).

This latter approach is currently very popular among
atomic and molecular theorists. It goes under the name
of "superposition of configurations" and has the appeal,
in its early stages, of providing a more intuitive picture
of the complex wave function as built out of a few
hydrogenic orbits. But when high accuracy is desired
and a large number of terms of (14) are used, this
interpretative advantage is lost and the only pertinent
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question (after one knows how to evaluate all the
matrix elements) is how rapidly does this expansion

converged
A number of people~ have investigated this question

by calculating the ground state of helium with selected
terms of (14). The conclusion of nearly all of these
works, either explicitly stated, or left implicitly to be
drawn from the results given, has been that the expan-
sion in / was rapidly convergent. v Our claim, in sharp
contrast, is that the / expansion converges rather
slowly, the contributions to the energy going as / 4 for
symmetric states and probably as / ' for antisymmetric
states.

Now, it may very well be that at low / values the
contributions decrease more rapidly and the above
asymptotic rates hold only after some rather large
(say 5 to 10) / value; or one may decide that these
asymptotic rates are not too bad and that it is desirable
to carry the work with (14) farther. It then becomes
crucial that the function C~(rt, rs) be well represented.
For high / values the most important part of this func-
tion is concentrated very sharply about the point r J,=r2,
and a direct attack on the associated two-dimensional
partial differential equations might be the best way to
solve for these highly correlated functions. On the other
hand, an expansion of C~(rt, rs) in a series of product
functions u„(r&)N (r&) will be very slowly convergent,
and any attempt to use just a few such functions should

give wholly inadequate results. Thus, the correct super-
position of configurations program will need more and
more radial configurations for each added angular
component.

We single out for criticism the paper of Tycko,
Thomas, and King'; this represents the most extensive
application of (14) and contains the (erroneous) con-
clusions typical of the several earlier attempts. In a
systematic attack on the helium ground state these
authors found rapidly decreasing contributions —about
a factor ~~ smaller at each step —for all / values added up
to 1=8. However, they used fewer radial functions as l

increased, and it is our contention that these higher /

values are very inadequately represented. This failure
should have made itself apparent if an attempt had
been made to add more radial functions at any given
higher / value in order to test for convergence.

It was noted by the authors that beyond /=4 their
results were not approaching the correct answer, but
were short by 0.00028 a.u. This discrepancy was blamed
on an insufficient solution of the leading term, /=0, for
which they got the upper bound —2.878920. Shull and
Lowdin' reported an upper bound of —2.878970 for this

7'However, conclusions of the more pessimistic kind such as
we are here presenting have been drawn already by A. W. Weiss,
Phys. Rev. 122, 1826 (1961).This suggests that other workers in
this Geld are already becoming more critical of the 'superposition
of configurations' method. The author thanks J. W. Cooper for
calling his attention to the Weiss work.

D. H. Tycko, L. H. Thomas, and K. M. King, Phys. Rev. 109,
369 (1958).

s H. Shull and P-O. Lowdin, J. Chem. Phys 30, 617 (1959)..

value, termed by them the radial limit, and guessed the
correct result was —2.87900&0.00003. We have ex-
tended this restricted calculation (see Appendix) and
found the value —2.879028 with an uncertainty of one
in the last figure. Thus, the inadequacy of their /=0
calculation actually explains only about one-third of
the total discrepancy in the work of Tycko e] u/. ; the
remainder of the discrepancy must be spread out over
the many / values, being undoubtedly smaller in abso-
lute magnitude for the higher / terms but, we believe,
much larger relative to the correct magnitudes of these
contributions.

There are two reservations which should be made
concerning the above comparison of our results with
previous calculations. First, is the fact that we have
studied only the second-order energy while these other
studies were concerned with the total energy problem.
We have no proof for the parallelism, but we believe
that the form of our principle result (13) is probably
correct for the complete problem, and we would even

put some credence in the numerical coefficient given
there, since it is known that the higher terms in (1a) are
actually very small even for Z=2. Secondly, when
other writers (see reference 7) speak of the correlation
energy in helium, they mean the difference between the
exact energy and the Hartree-Fock approximation. The
Hartree-Fock method includes the major part of the
radial interaction in an averaged way, and thus what
is generally referred to as radial correlation is only a
relatively small part of the total wave function. In the
high Z limit the Hartree-Fock contribution may be
calculated explicitly using a result given previously";
we find the value"'

—E& (Hartree-Pock) = (9 ln4 —26/27)/32 =0.1110032,

which checks with the (ls es)+ (ls ks) parts of the sum

(2a) evaluated by Scherr. ' This accounts for 88%%uq of
E2(0) or 70% of the total Es ', and thus with this part
taken out in the zeroth-order problem the relative
importance of all other terms is increased.

On the second problem, e-H scattering, there have
also been several attempts at using the basis (14) in a
large-scale calculation. Temkin" has recently obtained
results essentially as good as our s wave+p-wave
results discussed in Sec. III, although it is not clear how

reliable his d-wave contributions are (remember that
we are referring to the relative angular-momentum
components in the over-all 5 wave). Also Burke and
Schey" have reported fairly accurate phase shifts using

only s- and p-wave parts with a more restricted choice
of radial functions. It thus appears that fairly good
results (accurate within a few percent) for the scattering
problem are obtainable with these simple wave func-

"C. Schwartz, Ann. Phys. (New York) 2, 156 (1959).'"J. Linderherg, Phys. Rev. 121, 816 (1961)has also given this
result.

"A. Temkin, Phys. Rev. 126, 130 (1962).
'~ P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).
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tions. But we would again caution against any large-
scale program using (14) to get very high accuracy,
especially when, as in these other works, Ci(ri, rs) is
represented in product form.

V. SUMMARY

Our conclusion is that if one needs accuracy only in
the range 90% to 98% (roughly speaking), then the
Legendre polynomial expansion will give an adequate
representation of two- (many?) electron correlated
wave functions, using only I=0 and 1=1 terms. But if
much greater precision is required, the persistent use of
this approach (superposition of configurations) will be
both dificult at each step (for higher / values) and
rather slowly convergent from one step to the next.
Thus, for very accurate representations, the Hylleraas
variable r~2 is essential.

The computations reported here were carried out on
the IBM-704 facility of the University of California
Computer Center.

APPENDIX

The study of angular correlations leads inevitably to
the consideration of radial correlations. In order to
check on the radial limit for helium mentioned in the
discussion, we attempted a calculation using the
standard basis

p(r r ) —p e—2(ri+rm)g (r mr m+r nr m) (A1)

After we got to about 20 terms (through seventh
powers) it became apparent that the convergence was

going to be rather slow; and, with growing numerical
round-off errors, we could only do slightly poorer than
the result of Shull and Lowdin. ' We then tried the basis

P(ri rs) =Q e '("'+""Cm„r( r&" (A2)

and found decidedly better convergence, getting the
upper bounds —2.8790125 with 21 terms and
—2.8790264 with 45 terms.

We would like to suggest that functions of the type
p(r&, r&) may be generally quite useful. Firstly, these
functions (for the two-electron problem) imply no more
work in computing matrix elements than the conven-
tional type since the interaction term e'/r» already
necessitates the evaluation of the double (overlap)

integrals. Secondly, and most importantly, these func-
tions are correlated and can very easily represent the
type of behavior (as in Eq. (11)7 so important for the
higher / components and so hard to reproduce by (A1).

It may be thought that these functions are inadmis-
sible as trial functions since they have a (finite) dis-
continuity in their erst derivative at the point r&=r2.
Nevertheless it may readily be seen that the variational
principle is still valid, giving an upper bound for the
energy. One could easily put constraints on the coeS.-
cients in (A2) in order to insure continuity of the first
derivatives, or even on all derivatives (this would be
incorrect since the potential is not infinitely smooth);
but it would be preferable to let the variational principle
adjust the coef6cients as it wished.

We tried the simplest possible calculation with this
correlated function:

~t = (ri —rs) ~(«r&) (A4)

We attempted the lowest '5 state of helium using
(ri —rs)e "&e e"& and got the energy —2.1608, which is
slightly poorer than the screened hydrogenic result of
Eckart": —2.167. Our failure here is probably due to
the poor location of the node in the wave function.

It may be worthwhile investigating whether this
correlated type of wave function can be generalized for
use in many-electron atoms.

is C. Eckart, Phys. Rev. 36, 878 (1930).

(A3)

for the helium-ground state; and we got the energy
value —2.87274, which is remarkably good. It surpasses
the Hartree-Fock value —2.86168 and lacks only
—0.0063 of the radial limit —2.8/90; or, in another
comparison, this leaves only one-fifth of the error (in
the angle-independent calculation) of the familiar
function e |:~ ' "'&"'+"». With Z=1 a function of the
form, (A3) even yielded a bound state for the negative
hydrogen ion. This was to our knowledge the 6rst
simple wave function to show a bound state, although
the value of the ionization energy obtained is very small.

These functions we have been discussing are by con-
struction symmetric in the two coordinates. Anti-
symmetric states could be represented, for example, by


